36 research outputs found

    An analytic study of the fractional order model of HIV-1 virus and CD4+ T-cells using adomian method

    Get PDF
    In this article, we study the fractional mathematical model of HIV-1 infection of CD4+ T-cells, by studying a system of fractional differential equations of first order with some initial conditions, we study the changing effect of many parameters. The fractional derivative is described in the caputo sense. The adomian decomposition method (Shortly, ADM) method was used to calculate an approximate solution for the system under study. The nonlinear term is dealt with the help of adomian polynomials. Numerical results are presented with graphical justifications to show the accuracy of the proposed methods

    Study of Virus Dynamics by Mathematical Models

    Get PDF
    This thesis studies virus dynamics within host by mathematical models, and topics discussed include viral release strategies, viral spreading mechanism, and interaction of virus with the immune system. Firstly, we propose a delay differential equation model with distributed delay to investigate the evolutionary competition between budding and lytic viral release strategies. We find that when antibody is not established, the dynamics of competition depends on the respective basic reproduction numbers of the two viruses. If the basic reproductive ratio of budding virus is greater than that of lytic virus and one, budding virus can survive. When antibody is established for both strains but the neutralization capacities are the same for both strains, consequence of the competition also depends only on the basic reproduction numbers of the budding and lytic viruses. Using two concrete forms of the viral production functions, we are also able to conclude that budding virus will outcompete if the rates of viral production, death rates of infected cells and neutralizing capacities of the antibodies are the same for budding and lytic viruses. In this case, budding strategy would have evolutionary advantage. However, if the antibody neutralization capacity for the budding virus is larger than that for the lytic virus, lytic virus can outcompete provided that its reproductive ratio is very high. An explicit threshold is derived. Secondly, we consider model containing two modes for viral infection and spread, one is the diffusion-limited free virus transmission and the other is the direct cell-to-cell transfer of viral particles. By incorporating infection age, a rigorous analysis of the model shows that the model demonstrates a global threshold dynamics, fully described by the basic reproduction number, which is identified explicitly. The formula for the basic reproduction number of our model reveals the effects of various model parameters including the transmission rates of the two modes, and the impact of the infection age. We show that basic reproduction number is underestimated in the existing models that only consider the cell-free virus transmission, or the cell-to-cell infection, ignoring the other. Assuming logistic growth for target cells, we find that if the basic reproduction number is greater than one, the infection can persist and Hopf bifurcation can occur from the positive equilibrium within certain parameter ranges. Thirdly, the repulsion effect of superinfecting virion by infected cells is studied by a reaction diffusion equation model for virus infection dynamics. In this model, the diffusion of virus depends not only on its concentration gradient but also on the concentration of infected cells. The basic reproduction number, linear stability of steady states, spreading speed, and existence of traveling wave solutions for the model are discussed. It is shown that viruses spread more rapidly with the repulsion effect of infected cells on superinfecting virions, than with random diffusion only. For our model, the spreading speed of free virus is not consistent with the minimal traveling wave speed. With our general model, numerical computations of the spreading speed shows that the repulsion of superinfecting vision promotes the spread of virus, which confirms, not only qualitatively but also quantitatively, some recent experimental results. Finally, the effect of chemotactic movement of CD8+ cytotoxic T lymphocytes (CTLs) on HIV-1 infection dynamics is studied by a reaction diffusion model with chemotaxis. Choosing a typical chemosensitive function, we find that chemoattractive movement of CTLs due to HIV infection does not change stability of the positive steady state of the model. However, chemorepulsion movement of CTLs destabilizes the positive steady state as the strength of the chemotactic sensitivity increases. In this case, Turing instability occurs, which can be Hopf bifurcation or steady state bifurcation, and spatial heterogeneous patterns may form

    A diffusive cancer model with virotherapy: Studying the immune response and its analytical simulation

    Get PDF
    New cancer therapies, methods and protocols are needed to treat affected patients. Oncolytic viral therapy is a good suggestion for such treatment. This paper proposes a diffusive cancer model with virotherapy and an immune response. This work aims to study the aforementioned model while theoretically including positivity, boundedness and stability, as well as to find the analytical solutions. The analytical solutions are found by using the tanh-expansion method. As a result, we realized that the relative immune cell killing rate can be controlled by the viral burst size. The viral burst size is the number of viruses released from each infected cell during cell lysis. The increasing diffusion of the activated immune system leads to an increase in the uninfected cells. The presented model can be used to study the combination of immunotherapy and virotherapy

    Fractional derivative models for the spread of diseases

    Get PDF
    This thesis considers the mathematical modelling of disease, using fractional differential equations in order to provide a tool for the description of memory effects. In Chapter 3 we illustrate a commensurate fractional order tumor model, and we find a critical value of the fractional derivative dependent on the parameter values of the model. For fractional derivatives of orders less than the critical value an unstable equilibrium point of the system becomes stable. In order to show changes in the observed areas of attraction of two stable points in the system, we then consider a fractional order SIR epidemic model and investigate the change from a monostable to a bistable system.;Chapter 4 considers a model for virus dynamics where the fractional orders for populations are different, called an incommensurate system. An approximate analytical solution for the characteristic equation of the incommensurate model is found when the different fractional orders are similar and close to the critical value of the fractional order of the commensurate system. In addition, the instability boundary is found as a function of both parameters. A comparison between analytical and numerical results shows the high accuracy of this approximation.;Chapter 5 consists of two parts, in the first part we generalise the integer Fisher's equation to be a space-time fractional differential equation and consider travelling wave solutions. In the second part we generalise an integer SIR model with spatial heterogeneity, which was studied by Murray [117], to a space-time fractional derivative model. We apply the (G0/G)-expansion method and find travelling wave solutions, although in this case we must consider the Jumarie's modified Riemann-Liouville fractional derivative. Finally, we consider the effect of changing the orders of time and space fractional derivatives on the location and speed of the travelling wave solution.This thesis considers the mathematical modelling of disease, using fractional differential equations in order to provide a tool for the description of memory effects. In Chapter 3 we illustrate a commensurate fractional order tumor model, and we find a critical value of the fractional derivative dependent on the parameter values of the model. For fractional derivatives of orders less than the critical value an unstable equilibrium point of the system becomes stable. In order to show changes in the observed areas of attraction of two stable points in the system, we then consider a fractional order SIR epidemic model and investigate the change from a monostable to a bistable system.;Chapter 4 considers a model for virus dynamics where the fractional orders for populations are different, called an incommensurate system. An approximate analytical solution for the characteristic equation of the incommensurate model is found when the different fractional orders are similar and close to the critical value of the fractional order of the commensurate system. In addition, the instability boundary is found as a function of both parameters. A comparison between analytical and numerical results shows the high accuracy of this approximation.;Chapter 5 consists of two parts, in the first part we generalise the integer Fisher's equation to be a space-time fractional differential equation and consider travelling wave solutions. In the second part we generalise an integer SIR model with spatial heterogeneity, which was studied by Murray [117], to a space-time fractional derivative model. We apply the (G0/G)-expansion method and find travelling wave solutions, although in this case we must consider the Jumarie's modified Riemann-Liouville fractional derivative. Finally, we consider the effect of changing the orders of time and space fractional derivatives on the location and speed of the travelling wave solution

    Models of Delay Differential Equations

    Get PDF
    This book gathers a number of selected contributions aimed at providing a balanced picture of the main research lines in the realm of delay differential equations and their applications to mathematical modelling. The contributions have been carefully selected so that they cover interesting theoretical and practical analysis performed in the deterministic and the stochastic settings. The reader will find a complete overview of recent advances in ordinary and partial delay differential equations with applications in other multidisciplinary areas such as Finance, Epidemiology or Engineerin

    Mathematical and statistical methods for single cell data

    Get PDF
    The availability of single-cell data has increased rapidly in recent years and presents interesting new challenges in the analysis of such data and the modelling of the processes that generate it. In this thesis, we attempt to deal with some of those challenges by developing and exploring mathematical and statistical models for the evolution of population distributions over time, and methods for using aggregated single-cell data from individual patients in predictive diagnostic models of disease. In the first part of the thesis, we explore structured population models – a class of partial differential equations for describing the evolution of individual-level cell properties in a population over time. We begin by analysing an age-structured model of cell growth in which rates of proliferation and cell death are controlled by an external resource. We follow this with a method for extracting properties of a more general class of structured population models directly from single-cell data. In the final part of the thesis, we develop a flexible Bayesian statistical framework for building predictive models from possibly high-dimensional data collected from patients using single-cell technologies and find that the performance is promising compared to a number of existing methods

    Fitted non-polynomial spline method for singularly perturbed differential difference equations with integral boundary condition

    Get PDF
    The aim of this paper is to present fitted non-polynomial spline method for singularly perturbed differential-difference equations with integral boundary condition. The stability and uniform convergence of the proposed method are proved. To validate the applicability of the scheme, two model problems are considered for numerical experimentation and solved for different values of the perturbation parameter, ε and mesh size, h. The numerical results are tabulated in terms of maximum absolute errors and rate of convergence and it is observed that the present method is more accurate and uniformly convergent for h ≥ ε where the classical numerical methods fails to give good result and it also improves the results of the methods existing in the literature

    International Conference on Mathematical Analysis and Applications in Science and Engineering – Book of Extended Abstracts

    Get PDF
    The present volume on Mathematical Analysis and Applications in Science and Engineering - Book of Extended Abstracts of the ICMASC’2022 collects the extended abstracts of the talks presented at the International Conference on Mathematical Analysis and Applications in Science and Engineering – ICMA2SC'22 that took place at the beautiful city of Porto, Portugal, in June 27th-June 29th 2022 (3 days). Its aim was to bring together researchers in every discipline of applied mathematics, science, engineering, industry, and technology, to discuss the development of new mathematical models, theories, and applications that contribute to the advancement of scientific knowledge and practice. Authors proposed research in topics including partial and ordinary differential equations, integer and fractional order equations, linear algebra, numerical analysis, operations research, discrete mathematics, optimization, control, probability, computational mathematics, amongst others. The conference was designed to maximize the involvement of all participants and will present the state-of- the-art research and the latest achievements.info:eu-repo/semantics/publishedVersio

    Approximate dynamic programming based solutions for fixed-final-time optimal control and optimal switching

    Get PDF
    Optimal solutions with neural networks (NN) based on an approximate dynamic programming (ADP) framework for new classes of engineering and non-engineering problems and associated difficulties and challenges are investigated in this dissertation. In the enclosed eight papers, the ADP framework is utilized for solving fixed-final-time problems (also called terminal control problems) and problems with switching nature. An ADP based algorithm is proposed in Paper 1 for solving fixed-final-time problems with soft terminal constraint, in which, a single neural network with a single set of weights is utilized. Paper 2 investigates fixed-final-time problems with hard terminal constraints. The optimality analysis of the ADP based algorithm for fixed-final-time problems is the subject of Paper 3, in which, it is shown that the proposed algorithm leads to the global optimal solution providing certain conditions hold. Afterwards, the developments in Papers 1 to 3 are used to tackle a more challenging class of problems, namely, optimal control of switching systems. This class of problems is divided into problems with fixed mode sequence (Papers 4 and 5) and problems with free mode sequence (Papers 6 and 7). Each of these two classes is further divided into problems with autonomous subsystems (Papers 4 and 6) and problems with controlled subsystems (Papers 5 and 7). Different ADP-based algorithms are developed and proofs of convergence of the proposed iterative algorithms are presented. Moreover, an extension to the developments is provided for online learning of the optimal switching solution for problems with modeling uncertainty in Paper 8. Each of the theoretical developments is numerically analyzed using different real-world or benchmark problems --Abstract, page v
    corecore