17 research outputs found

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Strong Truncation Approximation in Tandem Queues with Blocking

    Get PDF
    Markov models are frequently used for performance modeling. However most models do not have closed form solutions, and numerical solutions are often not feasible due to the large or even infinite state space of models of practical interest. For that, the state-space truncation is often demanded for computation of this kind of models. In this paper, we use the strong stability approach to establish analytic error bounds for the truncation of a tandem queue with blocking. Numerical examples are carried out to illustrate the quality of the obtained error bounds

    Mathematical Analysis of Queue with Phase Service: An Overview

    Get PDF
    We discuss various aspects of phase service queueing models. A large number of models have been developed in the area of queueing theory incorporating the concept of phase service. These phase service queueing models have been investigated for resolving the congestion problems of many day-to-day as well as industrial scenarios. In this survey paper, an attempt has been made to review the work done by the prominent researchers on the phase service queues and their applications in several realistic queueing situations. The methodology used by several researchers for solving various phase service queueing models has also been described. We have classified the related literature based on modeling and methodological concepts. The main objective of present paper is to provide relevant information to the system analysts, managers, and industry people who are interested in using queueing theory to model congestion problems wherein the phase type services are prevalent

    Stability Problems for Stochastic Models: Theory and Applications II

    Get PDF
    Most papers published in this Special Issue of Mathematics are written by the participants of the XXXVI International Seminar on Stability Problems for Stochastic Models, 21­25 June, 2021, Petrozavodsk, Russia. The scope of the seminar embraces the following topics: Limit theorems and stability problems; Asymptotic theory of stochastic processes; Stable distributions and processes; Asymptotic statistics; Discrete probability models; Characterization of probability distributions; Insurance and financial mathematics; Applied statistics; Queueing theory; and other fields. This Special Issue contains 12 papers by specialists who represent 6 countries: Belarus, France, Hungary, India, Italy, and Russia

    Analysis of buffer allocations in time-dependent and stochastic flow lines

    Full text link
    This thesis reviews and classifies the literature on the Buffer Allocation Problem under steady-state conditions and on performance evaluation approaches for queueing systems with time-dependent parameters. Subsequently, new performance evaluation approaches are developed. Finally, a local search algorithm for the derivation of time-dependent buffer allocations is proposed. The algorithm is based on numerically observed monotonicity properties of the system performance in the time-dependent buffer allocations. Numerical examples illustrate that time-dependent buffer allocations represent an adequate way of minimizing the average WIP in the flow line while achieving a desired service level

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    An Approximate Dynamic Programming Approach to the Scheduling of Impatient Jobs in a Clearing System.

    Get PDF
    A single server is faced with a collection of jobs of varying duration and urgency. Before service starts, all jobs are subject to an initial triage, i.e., an assessment of both their urgency and of their service requirement, and are allocated to distinct classes. Jobs in one class have independent and identically distributed lifetimes during which they are available for service. Should a job's lifetime example before its service begins then it is lost from the system unserved. The goal is to schedule the jobs for service to maximise the expected number served to completion. Two heuristic policies have been proposed in the literature. One works well in a "no loss" limit while the other does so when lifetimes are short. Both can exhibit poor performance for problems at some distance from the regimes for which they were designed. We develop a robustly good heuristic by an approximative approach to the application of a single policy improvement step to the first policy above, in which we use a fluid model to obtain an approximation for its value function. The performance of the proposed heuristic is investigated in an extensive numerical study. This problem is substantially complicated if the initial triage is subject to error. We take a Bayesian approach to this additional uncertainty and discuss the design of heuristic policies to maximise the Bayes' return. We identify problem features for which a high price is paid for poor initial triage and for which improvements in initial job assessment yield significant improvements in service outcomes. An analytical upperbound for the cost of imperfect classification is developed for exponentially distributed lifetime cases. An extensive numerical study is conducted to explore the behaviour of the cost in more general situations
    corecore