974 research outputs found

    Backlund Transformations, D-Branes, and Fluxes in Minimal Type 0 Strings

    Full text link
    We study the Type 0A string theory in the (2,4k) superconformal minimal model backgrounds, focusing on the fully non-perturbative string equations which define the partition function of the model. The equations admit a parameter, Gamma, which in the spacetime interpretation controls the number of background D-branes, or R-R flux units, depending upon which weak coupling regime is taken. We study the properties of the string equations (often focusing on the (2,4) model in particular) and their physical solutions. The solutions are the potential for an associated Schrodinger problem whose wavefunction is that of an extended D-brane probe. We perform a numerical study of the spectrum of this system for varying Gamma and establish that when Gamma is a positive integer the equations' solutions have special properties consistent with the spacetime interpretation. We also show that a natural solution-generating transformation (that changes Gamma by an integer) is the Backlund transformation of the KdV hierarchy specialized to (scale invariant) solitons at zero velocity. Our results suggest that the localized D-branes of the minimal string theories are directly related to the solitons of the KdV hierarchy. Further, we observe an interesting transition when Gamma=-1.Comment: 17 pages, 3 figure

    Gaussian solitary waves and compactons in Fermi-Pasta-Ulam lattices with Hertzian potentials

    Get PDF
    We consider a class of fully-nonlinear Fermi-Pasta-Ulam (FPU) lattices, consisting of a chain of particles coupled by fractional power nonlinearities of order α>1\alpha >1. This class of systems incorporates a classical Hertzian model describing acoustic wave propagation in chains of touching beads in the absence of precompression. We analyze the propagation of localized waves when α\alpha is close to unity. Solutions varying slowly in space and time are searched with an appropriate scaling, and two asymptotic models of the chain of particles are derived consistently. The first one is a logarithmic KdV equation, and possesses linearly orbitally stable Gaussian solitary wave solutions. The second model consists of a generalized KdV equation with H\"older-continuous fractional power nonlinearity and admits compacton solutions, i.e. solitary waves with compact support. When α1+\alpha \rightarrow 1^+, we numerically establish the asymptotically Gaussian shape of exact FPU solitary waves with near-sonic speed, and analytically check the pointwise convergence of compactons towards the limiting Gaussian profile

    Stable Non--Perturbative Minimal Models Coupled to 2D Quantum Gravity

    Full text link
    A generalisation of the non--perturbatively stable solutions of string equations which respect the KdV flows, obtained recently for the (2m1,2)(2m-1,2) conformal minimal models coupled to two--dimensional quantum gravity, is presented for the (p,q)(p,q) models. These string equations are the most general string equations compatible with the qq--th generalised KdV flows. They exhibit a close relationship with the bi-hamiltonian structure in these hierarchies. The Ising model is studied as a particular example, for which a real non-singular numerical solution to the string susceptibility is presented.Comment: (35 pp; two figures not included; plain TEX

    Modulational Instability in Equations of KdV Type

    Full text link
    It is a matter of experience that nonlinear waves in dispersive media, propagating primarily in one direction, may appear periodic in small space and time scales, but their characteristics --- amplitude, phase, wave number, etc. --- slowly vary in large space and time scales. In the 1970's, Whitham developed an asymptotic (WKB) method to study the effects of small "modulations" on nonlinear periodic wave trains. Since then, there has been a great deal of work aiming at rigorously justifying the predictions from Whitham's formal theory. We discuss recent advances in the mathematical understanding of the dynamics, in particular, the instability of slowly modulated wave trains for nonlinear dispersive equations of KdV type.Comment: 40 pages. To appear in upcoming title in Lecture Notes in Physic
    corecore