28,580 research outputs found

    KNOWLEDGE-BASED NEURAL NETWORK FOR LINE FLOW CONTINGENCY SELECTION AND RANKING

    Get PDF
    The Line flow Contingency Selection and Ranking (CS & R) is performed to rank the critical contingencies in order of their severity. An Artificial Neural Network based method for MW security assessment corresponding to line outage events have been reported by various authors in the literature. One way to provide an understanding of the behaviour of Neural Networks is to extract rules that can be provided to the user. The domain knowledge (fuzzy rules extracted from Multi-layer Perceptron model trained by Back Propagation algorithm) is integrated into a Neural Network for fast and accurate CS & R in an IEEE 14-bus system, for unknown load patterns and are found to be suitable for on-line applications at Energy Management Centers. The system user is provided with the capability to determine the set of conditions under which a line-outage is critical, and if critical, then how severe it is, thereby providing some degree of transparency of the ANN solution

    Modeling Fault Propagation Paths in Power Systems: A New Framework Based on Event SNP Systems With Neurotransmitter Concentration

    Get PDF
    To reveal fault propagation paths is one of the most critical studies for the analysis of power system security; however, it is rather dif cult. This paper proposes a new framework for the fault propagation path modeling method of power systems based on membrane computing.We rst model the fault propagation paths by proposing the event spiking neural P systems (Ev-SNP systems) with neurotransmitter concentration, which can intuitively reveal the fault propagation path due to the ability of its graphics models and parallel knowledge reasoning. The neurotransmitter concentration is used to represent the probability and gravity degree of fault propagation among synapses. Then, to reduce the dimension of the Ev-SNP system and make them suitable for large-scale power systems, we propose a model reduction method for the Ev-SNP system and devise its simpli ed model by constructing single-input and single-output neurons, called reduction-SNP system (RSNP system). Moreover, we apply the RSNP system to the IEEE 14- and 118-bus systems to study their fault propagation paths. The proposed approach rst extends the SNP systems to a large-scaled application in critical infrastructures from a single element to a system-wise investigation as well as from the post-ante fault diagnosis to a new ex-ante fault propagation path prediction, and the simulation results show a new success and promising approach to the engineering domain

    Stochastic Model for Power Grid Dynamics

    Get PDF
    We introduce a stochastic model that describes the quasi-static dynamics of an electric transmission network under perturbations introduced by random load fluctuations, random removing of system components from service, random repair times for the failed components, and random response times to implement optimal system corrections for removing line overloads in a damaged or stressed transmission network. We use a linear approximation to the network flow equations and apply linear programming techniques that optimize the dispatching of generators and loads in order to eliminate the network overloads associated with a damaged system. We also provide a simple model for the operator's response to various contingency events that is not always optimal due to either failure of the state estimation system or due to the incorrect subjective assessment of the severity associated with these events. This further allows us to use a game theoretic framework for casting the optimization of the operator's response into the choice of the optimal strategy which minimizes the operating cost. We use a simple strategy space which is the degree of tolerance to line overloads and which is an automatic control (optimization) parameter that can be adjusted to trade off automatic load shed without propagating cascades versus reduced load shed and an increased risk of propagating cascades. The tolerance parameter is chosen to describes a smooth transition from a risk averse to a risk taken strategy...Comment: framework for a system-level analysis of the power grid from the viewpoint of complex network

    Proposed shunt rounding technique for large-scale security constrained loss minimization

    Get PDF
    The official published version can be obtained from the link below - Copyright @ 2010 IEEE.Optimal reactive power flow applications often model large numbers of discrete shunt devices as continuous variables, which are rounded to their nearest discrete value at the final iteration. This can degrade optimality. This paper presents novel methods based on probabilistic and adaptive threshold approaches that can extend existing security constrained optimal reactive power flow methods to effectively solve large-scale network problems involving discrete shunt devices. Loss reduction solutions from the proposed techniques were compared to solutions from the mixed integer nonlinear mathematical programming algorithm (MINLP) using modified IEEE standard networks up to 118 buses. The proposed techniques were also applied to practical large-scale network models of Great Britain. The results show that the proposed techniques can achieve improved loss minimization solutions when compared to the standard rounding method.This work was supported in part by the National Grid and in part by the EPSRC. Paper no. TPWRS-00653-2009

    What lies beneath? The role of informal and hidden networks in the management of crises

    Get PDF
    Crisis management research traditionally focuses on the role of formal communication networks in the escalation and management of organisational crises. Here, we consider instead informal and unobservable networks. The paper explores how hidden informal exchanges can impact upon organisational decision-making and performance, particularly around inter-agency working, as knowledge distributed across organisations and shared between organisations is often shared through informal means and not captured effectively through the formal decision-making processes. Early warnings and weak signals about potential risks and crises are therefore often missed. We consider the implications of these dynamics in terms of crisis avoidance and crisis management

    Power system security enhancement by HVDC links using a closed-loop emergency control

    Get PDF
    In recent years, guaranteeing that large-scale interconnected systems operate safely, stably and economically has become a major and emergency issue. A number of high profile blackouts caused by cascading outages have focused attention on this issue. Embedded HVDC (High Voltage Direct Current) links within a larger AC power system are known to act as a “firewall” against cascading disturbances and therefore, can effectively contribute in preventing blackouts. A good example is the 2003 blackout in USA and Canada, where the QuĂ©bec grid was not affected due to its HVDC interconnection. In the literature, many works have studied the impact of HVDC on the power system stability, but very few examples exist in the area of its impact on the system security. This paper presents a control strategy for HVDC systems to increase their contribution to system security. A real-time closed-loop control scheme is used to modulate the DC power of HVDC links to alleviate AC system overloads and improve system security. Simulations carried out on a simplified model of the Hydro-QuĂ©bec network show that the proposed method works well and can greatly improve system security during emergency situations.Peer reviewedFinal Accepted Versio

    Mission Control Center enhancement opportunities in the 1990's

    Get PDF
    The purpose of this paper is to present a framework for understanding the major enhancement opportunities for Air Force Mission Control Center/Test Support Centers (MCC's/TSC's) in the 1990's. Much of this paper is based on the findings of Study 232 and work currently underway in Study 2-6 for the Air Force Systems Command, Space System Division, Network Program Office. In this paper, we will address MCC/TSC enhancement needs primarily from the operator perspective, in terms of the increased capabilities required to improve space operations task performance

    Lyapunov Functions Family Approach to Transient Stability Assessment

    Get PDF
    Analysis of transient stability of strongly nonlinear post-fault dynamics is one of the most computationally challenging parts of Dynamic Security Assessment. This paper proposes a novel approach for assessment of transient stability of the system. The approach generalizes the idea of energy methods, and extends the concept of energy function to a more general Lyapunov Functions Family (LFF) constructed via Semi-Definite-Programming techniques. Unlike the traditional energy function and its variations, the constructed Lyapunov functions are proven to be decreasing only in a finite neighborhood of the equilibrium point. However, we show that they can still certify stability of a broader set of initial conditions in comparison to the traditional energy function in the closest-UEP method. Moreover, the certificates of stability can be constructed via a sequence of convex optimization problems that are tractable even for large scale systems. We also propose specific algorithms for adaptation of the Lyapunov functions to specific initial conditions and demonstrate the effectiveness of the approach on a number of IEEE test cases
    • 

    corecore