3,993 research outputs found

    Context-Dependent Acoustic Modeling without Explicit Phone Clustering

    Full text link
    Phoneme-based acoustic modeling of large vocabulary automatic speech recognition takes advantage of phoneme context. The large number of context-dependent (CD) phonemes and their highly varying statistics require tying or smoothing to enable robust training. Usually, Classification and Regression Trees are used for phonetic clustering, which is standard in Hidden Markov Model (HMM)-based systems. However, this solution introduces a secondary training objective and does not allow for end-to-end training. In this work, we address a direct phonetic context modeling for the hybrid Deep Neural Network (DNN)/HMM, that does not build on any phone clustering algorithm for the determination of the HMM state inventory. By performing different decompositions of the joint probability of the center phoneme state and its left and right contexts, we obtain a factorized network consisting of different components, trained jointly. Moreover, the representation of the phonetic context for the network relies on phoneme embeddings. The recognition accuracy of our proposed models on the Switchboard task is comparable and outperforms slightly the hybrid model using the standard state-tying decision trees.Comment: Submitted to Interspeech 202

    Phoneme and sentence-level ensembles for speech recognition

    Get PDF
    We address the question of whether and how boosting and bagging can be used for speech recognition. In order to do this, we compare two different boosting schemes, one at the phoneme level and one at the utterance level, with a phoneme-level bagging scheme. We control for many parameters and other choices, such as the state inference scheme used. In an unbiased experiment, we clearly show that the gain of boosting methods compared to a single hidden Markov model is in all cases only marginal, while bagging significantly outperforms all other methods. We thus conclude that bagging methods, which have so far been overlooked in favour of boosting, should be examined more closely as a potentially useful ensemble learning technique for speech recognition

    Fast and Accurate OOV Decoder on High-Level Features

    Full text link
    This work proposes a novel approach to out-of-vocabulary (OOV) keyword search (KWS) task. The proposed approach is based on using high-level features from an automatic speech recognition (ASR) system, so called phoneme posterior based (PPB) features, for decoding. These features are obtained by calculating time-dependent phoneme posterior probabilities from word lattices, followed by their smoothing. For the PPB features we developed a special novel very fast, simple and efficient OOV decoder. Experimental results are presented on the Georgian language from the IARPA Babel Program, which was the test language in the OpenKWS 2016 evaluation campaign. The results show that in terms of maximum term weighted value (MTWV) metric and computational speed, for single ASR systems, the proposed approach significantly outperforms the state-of-the-art approach based on using in-vocabulary proxies for OOV keywords in the indexed database. The comparison of the two OOV KWS approaches on the fusion results of the nine different ASR systems demonstrates that the proposed OOV decoder outperforms the proxy-based approach in terms of MTWV metric given the comparable processing speed. Other important advantages of the OOV decoder include extremely low memory consumption and simplicity of its implementation and parameter optimization.Comment: Interspeech 2017, August 2017, Stockholm, Sweden. 201

    Exploiting Low-dimensional Structures to Enhance DNN Based Acoustic Modeling in Speech Recognition

    Get PDF
    We propose to model the acoustic space of deep neural network (DNN) class-conditional posterior probabilities as a union of low-dimensional subspaces. To that end, the training posteriors are used for dictionary learning and sparse coding. Sparse representation of the test posteriors using this dictionary enables projection to the space of training data. Relying on the fact that the intrinsic dimensions of the posterior subspaces are indeed very small and the matrix of all posteriors belonging to a class has a very low rank, we demonstrate how low-dimensional structures enable further enhancement of the posteriors and rectify the spurious errors due to mismatch conditions. The enhanced acoustic modeling method leads to improvements in continuous speech recognition task using hybrid DNN-HMM (hidden Markov model) framework in both clean and noisy conditions, where upto 15.4% relative reduction in word error rate (WER) is achieved

    Improving large vocabulary continuous speech recognition by combining GMM-based and reservoir-based acoustic modeling

    Get PDF
    In earlier work we have shown that good phoneme recognition is possible with a so-called reservoir, a special type of recurrent neural network. In this paper, different architectures based on Reservoir Computing (RC) for large vocabulary continuous speech recognition are investigated. Besides experiments with HMM hybrids, it is shown that a RC-HMM tandem can achieve the same recognition accuracy as a classical HMM, which is a promising result for such a fairly new paradigm. It is also demonstrated that a state-level combination of the scores of the tandem and the baseline HMM leads to a significant improvement over the baseline. A word error rate reduction of the order of 20\% relative is possible
    corecore