3,830 research outputs found

    Deep speech inpainting of time-frequency masks

    Full text link
    Transient loud intrusions, often occurring in noisy environments, can completely overpower speech signal and lead to an inevitable loss of information. While existing algorithms for noise suppression can yield impressive results, their efficacy remains limited for very low signal-to-noise ratios or when parts of the signal are missing. To address these limitations, here we propose an end-to-end framework for speech inpainting, the context-based retrieval of missing or severely distorted parts of time-frequency representation of speech. The framework is based on a convolutional U-Net trained via deep feature losses, obtained using speechVGG, a deep speech feature extractor pre-trained on an auxiliary word classification task. Our evaluation results demonstrate that the proposed framework can recover large portions of missing or distorted time-frequency representation of speech, up to 400 ms and 3.2 kHz in bandwidth. In particular, our approach provided a substantial increase in STOI & PESQ objective metrics of the initially corrupted speech samples. Notably, using deep feature losses to train the framework led to the best results, as compared to conventional approaches.Comment: Accepted to InterSpeech202

    Deep Divergence-Based Approach to Clustering

    Get PDF
    A promising direction in deep learning research consists in learning representations and simultaneously discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable loss functions to train deep neural networks for clustering is still an open question. Our contribution to this emerging field is a new deep clustering network that leverages the discriminative power of information-theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the proposed network achieves competitive performance with respect to other state-of-the-art methods, scales well to large datasets, and does not require pre-training steps
    • …
    corecore