6,463 research outputs found

    Buffer Sizing for 802.11 Based Networks

    Get PDF
    We consider the sizing of network buffers in 802.11 based networks. Wireless networks face a number of fundamental issues that do not arise in wired networks. We demonstrate that the use of fixed size buffers in 802.11 networks inevitably leads to either undesirable channel under-utilization or unnecessary high delays. We present two novel dynamic buffer sizing algorithms that achieve high throughput while maintaining low delay across a wide range of network conditions. Experimental measurements demonstrate the utility of the proposed algorithms in a production WLAN and a lab testbed.Comment: 14 pages, to appear on IEEE/ACM Transactions on Networkin

    Experimental performance of DCCP over live satellite and long range wireless links

    Get PDF
    We present experimental results for the performance over satellite and long range wireless (WiMax) links of the new TCP-Friendly Rate Control (TFRC) congestion control mechanism from the Datagram Congestion Control Protocol (DCCP) proposed for use with real-time traffic. We evaluate the performance of the standard DCCP/CCID3 algorithm and identify two problem areas: the measured DCCP/CCID3 rate is inferior to the rate achievable with standard TCP and a significant rate oscillation continuously occurs making the resulting rate variable even in the short term. We analyse the links and identify the potential causes, i.e. long and variable delay and link errors. As a second contribution, we propose a change in the DCCP/CCID3 algorithm in which the number of feedback messages is increased from the currently standard of at least one per return trip time. Although it is recognised that the increase in control traffic may decrease the overall efficiency, we demonstrate that the change results in higher data rates which are closer to what is achievable with TCP on those networks and that the overhead introduced remains acceptable

    TCP in the Internet of Things: from ostracism to prominence

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.TCP has traditionally been neglected as a transport-layer protocol for the Internet of Things (IoT). However, recent trends and industry needs are favoring TCP presence in IoT environments. In this article, we describe the main IoT scenarios where TCP will be used. We then analyze the historically claimed issues of TCP in the IoT context. We argue that, in contrast to generally accepted wisdom, most of those possible issues fall in one of the following categories: i) are also found in well-accepted IoT end-to-end reliability mechanisms, ii) can be solved, or iii) are not actual issues. Considering the future prominent role of TCP in the IoT, we provide recommendations for lightweight TCP implementation and suitable operation in such scenarios, based on our IETF standardization work on the topic.Postprint (author's final draft

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan

    Active Queue Management for Fair Resource Allocation in Wireless Networks

    Get PDF
    This paper investigates the interaction between end-to-end flow control and MAC-layer scheduling on wireless links. We consider a wireless network with multiple users receiving information from a common access point; each user suffers fading, and a scheduler allocates the channel based on channel quality,but subject to fairness and latency considerations. We show that the fairness property of the scheduler is compromised by the transport layer flow control of TCP New Reno. We provide a receiver-side control algorithm, CLAMP, that remedies this situation. CLAMP works at a receiver to control a TCP sender by setting the TCP receiver's advertised window limit, and this allows the scheduler to allocate bandwidth fairly between the users

    Evaluation Study for Delay and Link Utilization with the New-Additive Increase Multiplicative Decrease Congestion Avoidance and Control Algorithm

    Get PDF
    As the Internet becomes increasingly heterogeneous, the issue of congestion avoidance and control becomes ever more important. And the queue length, end-to-end delays and link utilization is some of the important things in term of congestion avoidance and control mechanisms. In this work we continue to study the performances of the New-AIMD (Additive Increase Multiplicative Decrease) mechanism as one of the core protocols for TCP congestion avoidance and control algorithm, we want to evaluate the effect of using the AIMD algorithm after developing it to find a new approach, as we called it the New-AIMD algorithm to measure the Queue length, delay and bottleneck link utilization, and use the NCTUns simulator to get the results after make the modification for the mechanism. And we will use the Droptail mechanism as the active queue management mechanism (AQM) in the bottleneck router. After implementation of our new approach with different number of flows, we expect the delay will less when we measure the delay dependent on the throughput for all the system, and also we expect to get end-to-end delay less. And we will measure the second type of delay a (queuing delay), as we shown in the figure 1 bellow. Also we will measure the bottleneck link utilization, and we expect to get high utilization for bottleneck link with using this mechanism, and avoid the collisions in the link
    corecore