559 research outputs found

    Real-Time Digital Video Streaming at Low-VHF for Compact Autonomous Agents in Complex Scenes

    Full text link
    This paper presents an experimental investigation of real-time digital video streaming in physically complex Non-Line-Of-Sight (NLoS) channels using a low-power, low-VHF system integrated on a compact robotic platform. Reliable video streaming in NLoS channels over infrastructure-poor ad-hoc radio networks is challenging due to multipath and shadow fading. In this effort, we focus on exploiting the near-ground low-VHF channel which has been shown to have improved penetration, reduced fading, and lower power requirements (which is critical for autonomous agents with limited power) compared to higher frequencies. Specifically, we develop a compact, low-power, low-VHF radio test-bed enabled by recent advances in efficient miniature antennas and off-the-shelf software-defined radios. Our main goal is to carry out an empirical study in realistic environments of how the improved propagation conditions at low-VHF affect the reliability of video-streaming with constraints stemming from the limited available bandwidth with electrically small low-VHF antennas. We show quantitative performance analysis of video streaming from a robotic platform navigating inside a large occupied building received by a node located outdoors: bit error rate (BER) and channel-induced Peak Signal-to-Noise Ratio (PSNR) degradation. The results show channel-effect-free-like video streaming with the low-VHF system in complex NLoS channels.Comment: Accepted for publication in 2019 IEEE 89th Vehicular Technology Conferenc

    Robotic Mobility Diversity Algorithm with Continuous Search Space

    Get PDF
    Small scale fading makes the wireless channel gain vary significantly over small distances and in the context of classical communication systems it can be detrimental to performance. But in the context of mobile robot (MR) wireless communications, we can take advantage of the fading using a mobility diversity algorithm (MDA) to deliberately locate the MR at a point where the channel gain is high. There are two classes of MDAs. In the first class, the MR explores various points, stops at each one to collect channel measurements and then locates the best position to establish communications. In the second class the MR moves, without stopping, along a continuous path while collecting channel measurements and then stops at the end of the path. It determines the best point to establish communications. Until now, the shape of the continuous path for such MDAs has been arbitrarily selected and currently there is no method to optimize it. In this paper, we propose a method to optimize such a path. Simulation results show that such optimized paths provide the MDAs with an increased performance, enabling them to experience higher channel gains while using less mechanical energy for the MR motion

    Modeling the Behavior of Multipath Components Pertinent to Indoor Geolocation

    Get PDF
    Recently, a number of empirical models have been introduced in the literature for the behavior of direct path used in the design of algorithms for RF based indoor geolocation. Frequent absence of direct path has been a major burden on the performance of these algorithms directing researchers to discover algorithms using multipath diversity. However, there is no reliable model for the behavior of multipath components pertinent to precise indoor geolocation. In this dissertation, we first examine the absence of direct path by statistical analysis of empirical data. Then we show how the concept of path persistency can be exploited to obtain accurate ranging using multipath diversity. We analyze the effects of building architecture on the multipath structure by demonstrating the effects of wall length and wall density on the path persistency. Finally, we introduce a comprehensive model for the spatial behavior of multipath components. We use statistical analysis of empirical data obtained by a measurement calibrated ray-tracing tool to model the time-of- arrival, angle-of-arrival and path gains. The relationship between the transmitter-receiver separation and the number of paths are also incorporated in our model. In addition, principles of ray optics are applied to explain the spatial evolution of path gains, time-of-arrival and angle-of-arrival of individual multipath components as a mobile terminal moves inside a typical indoor environment. We also use statistical modeling for the persistency and birth/death rate of the paths

    Sensitivity Analysis for Measurements of Multipath Parameters Pertinent to TOA based Indoor Geolocation

    Get PDF
    Recently, indoor geolocation technologies has been attracting tremendous attention. For indoor environments, the fine time resolution of ultra-wideband (UWB) signals enables the potential of accurate distance measurement of the direct path (DP) between a number of reference sources and the people or assets of interest. However, Once the DP is not available or is shadowed, substantial errors will be introduced into the ranging measurements, leading to large localization errors when measurements are combined from multiple sources. The measurement accuracy in undetected direct path (UDP) conditions can be improved in some cases by exploiting the geolocation information contained in the indirect path measurements. Therefore, the dynamic spatial behavior of paths is an important issue for positioning techniques based on TOA of indirect paths. The objectives of this thesis are twofold. The first is to analyze the sensitivity of TOA estimation techniques based on TOA of the direct path. we studied the effect of distance, bandwidth and multipath environment on the accuracy of various TOA estimation techniques. The second is to study the sensitivity of multipath parameters pertinent to TOA estimation techniques based on the TOA of the indirect paths. We mainly looked into the effect of distance, bandwidth, threshold for picking paths, and multipath environment on the number of multipath components(MPCs) and path persistency. Our results are based on data from a new measurement campaign conducted on the 3rd floor of AK laboratory. For the TOA estimation techniques based on DP, the line of sight (LOS) scenario provides greatest accuracy and these TOA estimation techniques are most sensitive to bandwidth availability in obstructed line of sight (OLOS) scenario. All the TOA estimation algorithms perform poorly in the UDP scenario although the use of higher bandwidth can reduce the ranging error to some extent. Based on our processed results, The proposal for selecting the appropriate TOA estimation technique with certain constrains is given. The sensitivity study of multipath parameters pertinent to indirect-path-based TOA estimation techniques shows that the number of MPCs is very sensitive to the threshold for picking paths and to the noise threshold. It generally decreases as the distance increase while larger bandwidth always resolves more MPCs. The multipath components behave more persistently in line of sight (LOS) and obstructed line of sight (OLOS) scenarios than in UDP scenarios, and the use of larger bandwidth and higher threshold for picking paths also result in more persistent paths
    • …
    corecore