1,437 research outputs found

    Optimal Pricing Effect on Equilibrium Behaviors of Delay-Sensitive Users in Cognitive Radio Networks

    Full text link
    This paper studies price-based spectrum access control in cognitive radio networks, which characterizes network operators' service provisions to delay-sensitive secondary users (SUs) via pricing strategies. Based on the two paradigms of shared-use and exclusive-use dynamic spectrum access (DSA), we examine three network scenarios corresponding to three types of secondary markets. In the first monopoly market with one operator using opportunistic shared-use DSA, we study the operator's pricing effect on the equilibrium behaviors of self-optimizing SUs in a queueing system. %This queue represents the congestion of the multiple SUs sharing the operator's single \ON-\OFF channel that models the primary users (PUs) traffic. We provide a queueing delay analysis with the general distributions of the SU service time and PU traffic using the renewal theory. In terms of SUs, we show that there exists a unique Nash equilibrium in a non-cooperative game where SUs are players employing individual optimal strategies. We also provide a sufficient condition and iterative algorithms for equilibrium convergence. In terms of operators, two pricing mechanisms are proposed with different goals: revenue maximization and social welfare maximization. In the second monopoly market, an operator exploiting exclusive-use DSA has many channels that will be allocated separately to each entering SU. We also analyze the pricing effect on the equilibrium behaviors of the SUs and the revenue-optimal and socially-optimal pricing strategies of the operator in this market. In the third duopoly market, we study a price competition between two operators employing shared-use and exclusive-use DSA, respectively, as a two-stage Stackelberg game. Using a backward induction method, we show that there exists a unique equilibrium for this game and investigate the equilibrium convergence.Comment: 30 pages, one column, double spac

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    The hippocampus and cerebellum in adaptively timed learning, recognition, and movement

    Full text link
    The concepts of declarative memory and procedural memory have been used to distinguish two basic types of learning. A neural network model suggests how such memory processes work together as recognition learning, reinforcement learning, and sensory-motor learning take place during adaptive behaviors. To coordinate these processes, the hippocampal formation and cerebellum each contain circuits that learn to adaptively time their outputs. Within the model, hippocampal timing helps to maintain attention on motivationally salient goal objects during variable task-related delays, and cerebellar timing controls the release of conditioned responses. This property is part of the model's description of how cognitive-emotional interactions focus attention on motivationally valued cues, and how this process breaks down due to hippocampal ablation. The model suggests that the hippocampal mechanisms that help to rapidly draw attention to salient cues could prematurely release motor commands were not the release of these commands adaptively timed by the cerebellum. The model hippocampal system modulates cortical recognition learning without actually encoding the representational information that the cortex encodes. These properties avoid the difficulties faced by several models that propose a direct hippocampal role in recognition learning. Learning within the model hippocampal system controls adaptive timing and spatial orientation. Model properties hereby clarify how hippocampal ablations cause amnesic symptoms and difficulties with tasks which combine task delays, novelty detection, and attention towards goal objects amid distractions. When these model recognition, reinforcement, sensory-motor, and timing processes work together, they suggest how the brain can accomplish conditioning of multiple sensory events to delayed rewards, as during serial compound conditioning.Air Force Office of Scientific Research (F49620-92-J-0225, F49620-86-C-0037, 90-0128); Advanced Research Projects Agency (ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309, N00014-92-J-1904); National Institute of Mental Health (MH-42900

    Learning Dimensions: Lessons from Field Studies

    Get PDF
    In this paper, we describe work to investigate the creation of engaging programming learning experiences. Background research informed the design of four fieldwork studies involving a range of age groups to explore how programming tasks could best be framed to motivate learners. Our empirical findings from these four studies, described here, contributed to the design of a set of programming "Learning Dimensions" (LDs). The LDs provide educators with insights to support key design decisions for the creation of engaging programming learning experiences. This paper describes the background to the identification of these LDs and how they could address the design and delivery of highly engaging programming learning tasks. A web application has been authored to support educators in the application of the LDs to their lesson design

    Early Developmental Activities and Computing Proficiency

    Get PDF
    As countries adopt computing education for all pupils from primary school upwards, there are challenging indicators: significant proportions of students who choose to study computing at universities fail the introductory courses, and the evidence for links between formal education outcomes and success in CS is limited. Yet, as we know, some students succeed without prior computing experience. Why is this? <br/><br/> Some argue for an innate ability, some for motivation, some for the discrepancies between the expectations of instructors and students, and some – simply – for how programming is being taught. All agree that becoming proficient in computing is not easy. Our research takes a novel view on the problem and argues that some of that success is influenced by early childhood experiences outside formal education. <br/><br/> In this study, we analyzed over 1300 responses to a multi-institutional and multi-national survey that we developed. The survey captures enjoyment of early developmental activities such as childhood toys, games and pastimes between the ages 0 — 8 as well as later life experiences with computing. We identify unifying features of the computing experiences in later life, and attempt to link these computing experiences to the childhood activities. <br/><br/> The analysis indicates that computing proficiency should be seen from multiple viewpoints, including both skill-level and confidence. It shows that particular early childhood experiences are linked to parts of computing proficiency, namely those related to confidence with problem solving using computing technology. These are essential building blocks for more complex use. We recognize issues in the experimental design that may prevent our data showing a link between early activities and more complex computing skills, and suggest adjustments. Ultimately, it is hoped that this line of research will feed in to early years and primary education, and thereby improve computing education for all

    Environmental Engineering (Laboratory)

    Get PDF
    This module will give the students an understanding of the Environmental Engineering (Laboratory) for the course DAC 12203 offered by the Centre of Diploma Studies (CeDS), Universiti Tun Hussein Onn Malaysia (UTHM)

    The emotional gatekeeper: a computational model of attentional selection and suppression through the pathway from the amygdala to the inhibitory thalamic reticular nucleus

    Get PDF
    In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain's emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN) is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective 'framing' effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders.R01MH057414 - NIMH NIH HHS; R01 MH057414 - NIMH NIH HHS; R01 MH101209 - NIMH NIH HHS; R01NS024760 - NINDS NIH HHS; R01MH101209 - NIMH NIH HHS; R01 NS024760 - NINDS NIH HH

    Exploratory factor analysis-instrument for self-assessment of computation thinking skills and collaboration skills

    Get PDF
    This study focuses on developing and validating instruments to assess the computational thinking skills (CTS) and collaboration skills (CS) of undergraduate students in Indonesia. Employing a quantitative research approach with the exploratory factor analysis (EFA) technique, the research process unfolded in three validation steps. First, face validity was established through expert judgment. Second, discriminant validity was examined using product-moment correlations and Cronbach’s alpha. Finally, EFA were employed to assess the factorial structure. The instrument development process followed five phases: drafting the instrument, face validity assessment by experts, data collection involving 242 undergraduate students as samples, discriminant validity analysis (product moment and Cronbach’s alpha), and EFA analysis to group items and construct dimensions. This study identified six dimensions for CTS (algorithmic thinking, cooperative thinking, problem reformulation, creativity, critical thinking, and systematic testing) and three dimensions for CS (knowledge sharing, planning, and responsibility). These findings support validating the CTS and CS self-assessment scale, making it a valuable tool for evaluating undergraduate student learning and researching computational thinking and CS in Indonesia. Researchers and educators are encouraged to utilize the CTS and CS instrument for self-assessment purposes and further exploration of these competencies among undergraduate students

    Patterns for Active E-Learning in CMS Environments

    Get PDF
    The proliferation of course management systems (CMS) in the last decade stimulated educators in establishing novel active e-learning practices. Only a few of these practices, however, have been systematically described and published as pedagogic patterns. The lack of formal patterns is an obstacle to the systematic reuse of beneficial active e-learning experiences. This paper aims to partially fill the void by offering a collection of active e-learning patterns that are derived from our continuous course design experience in standard CMS environments, such as Moodle and Black-board. Our technical focus is on active e-learning patterns that can boost student interest in computing-related fields and increase student enrolment in computing-related courses. Members of the international e-learning community can benefit from active e-learning patterns by applying them in the design of new CMS-based courses – in computing and other technical fields
    • …
    corecore