3,628 research outputs found

    An Experimental Platform for large-scale research facing FI-IoT scenarios

    Get PDF
    Providing experimental facilities for the Internet of Things (IoT) world is of paramount importance to materialise the Future Internet (FI) vision. The level of maturity achieved at the networking level in Sensor and Actuator networks (SAN) justifies the increasing demand on the research community to shift IoT testbed facilities from the network to the service and information management areas. In this paper we present an Experimental Platform fulfilling these needs by: integrating heterogeneous SAN infrastructures in a homogeneous way; providing mechanisms to handle information, and facilitating the development of experimental services. It has already been used to deploy applications in three different field trials: smart metering, smart places and environmental monitoring and it will be one of the components over which the SmartSantander project, that targets a large-scale IoT experimental facility, will rely o

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    HoPP: Robust and Resilient Publish-Subscribe for an Information-Centric Internet of Things

    Full text link
    This paper revisits NDN deployment in the IoT with a special focus on the interaction of sensors and actuators. Such scenarios require high responsiveness and limited control state at the constrained nodes. We argue that the NDN request-response pattern which prevents data push is vital for IoT networks. We contribute HoP-and-Pull (HoPP), a robust publish-subscribe scheme for typical IoT scenarios that targets IoT networks consisting of hundreds of resource constrained devices at intermittent connectivity. Our approach limits the FIB tables to a minimum and naturally supports mobility, temporary network partitioning, data aggregation and near real-time reactivity. We experimentally evaluate the protocol in a real-world deployment using the IoT-Lab testbed with varying numbers of constrained devices, each wirelessly interconnected via IEEE 802.15.4 LowPANs. Implementations are built on CCN-lite with RIOT and support experiments using various single- and multi-hop scenarios

    A survey on subjecting electronic product code and non-ID objects to IP identification

    Full text link
    Over the last decade, both research on the Internet of Things (IoT) and real-world IoT applications have grown exponentially. The IoT provides us with smarter cities, intelligent homes, and generally more comfortable lives. However, the introduction of these devices has led to several new challenges that must be addressed. One of the critical challenges facing interacting with IoT devices is to address billions of devices (things) around the world, including computers, tablets, smartphones, wearable devices, sensors, and embedded computers, and so on. This article provides a survey on subjecting Electronic Product Code and non-ID objects to IP identification for IoT devices, including their advantages and disadvantages thereof. Different metrics are here proposed and used for evaluating these methods. In particular, the main methods are evaluated in terms of their: (i) computational overhead, (ii) scalability, (iii) adaptability, (iv) implementation cost, and (v) whether applicable to already ID-based objects and presented in tabular format. Finally, the article proves that this field of research will still be ongoing, but any new technique must favorably offer the mentioned five evaluative parameters.Comment: 112 references, 8 figures, 6 tables, Journal of Engineering Reports, Wiley, 2020 (Open Access

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Survey of Impact of Technology on Effective Implementation of Precision Farming in India

    Get PDF
    The advancements in technology have made its impact on almost every field. India being an agricultural country, proper use of technology can greatly help in improving the standard of living of the farmers. With varying weather conditions, illiteracy of farmers and non-availability of timely assistance, the farmers of this country could not get the best out of their efforts. Precision farming focuses mainly on the aspects that can improve the efficiency based on the data collected from various sources viz. meteorology, sensors, GIS, GPS, etc. The information pertaining to farmland (e.g., soil moisture, soil pH, soil nitrogen) and agro-meteorology (e.g., temperature & humidity, solar radiation, wind speed, atmospheric CO2 concentration, rainfall, climate change and global warming) are used as input parameters to decide the varying requirements of the crop cultivation. Historical farm land data are used as a means to decide on the kind of actions to be taken under a specific scenario. This paper surveys the existing methods of precision farming and highlights the impact of technology in farming. An overview of different technologies used in precision farming around the world and their implications on the yield are discussed. The methods adopted towards managing different types of crops, the varying environmental conditions and the use of realtime data being collected through sensors are also analyzed. Also, the need for dynamic approaches to assist the farmers in taking context specific decisions has been highlighted

    Digital Twin Concept, Method and Technical Framework for Smart Meters

    Get PDF
    Smart meters connect smart grid electricity suppliers and users. Smart meters have become a research hotspot as smart grid applications like demand response, power theft prevention, power quality monitoring, peak valley time of use prices, and peer-to-peer (P2P) energy trading have grown. But, as the carriers of these functions, smart meters have technical problems such as limited computing resources, difficulty in upgrading, and high costs, which to some extent restrict the further development of smart grid applications. To address these issues, this study offers a container-based digital twin (CDT) approach for smart meters, which not only increases the user-facing computing resources of smart meters but also simplifies and lowers the overall cost and technical complexity of meter changes. In order to further validate the effectiveness of this method in real-time applications on the smart grid user side, this article tested and analyzed the communication performance of the digital twin system in three areas: remote application services, peer-to-peer transactions, and real-time user request services. The experimental results show that the CDT method proposed in this paper meets the basic requirements of smart grid user-side applications for real-time communication. The container is deployed in the cloud, and the average time required to complete 100 P2P communications using our smart meter structure is less than 2.4 seconds, while the average time required for existing smart meter structures to complete the same number of P2P communications is 208 seconds. Finally, applications, the future development direction of the digital twin method, and technology architecture are projected
    corecore