6 research outputs found

    An experimental exploration of Marsaglia's xorshift generators, scrambled

    Full text link
    Marsaglia proposed recently xorshift generators as a class of very fast, good-quality pseudorandom number generators. Subsequent analysis by Panneton and L'Ecuyer has lowered the expectations raised by Marsaglia's paper, showing several weaknesses of such generators, verified experimentally using the TestU01 suite. Nonetheless, many of the weaknesses of xorshift generators fade away if their result is scrambled by a non-linear operation (as originally suggested by Marsaglia). In this paper we explore the space of possible generators obtained by multiplying the result of a xorshift generator by a suitable constant. We sample generators at 100 equispaced points of their state space and obtain detailed statistics that lead us to choices of parameters that improve on the current ones. We then explore for the first time the space of high-dimensional xorshift generators, following another suggestion in Marsaglia's paper, finding choices of parameters providing periods of length 21024−12^{1024} - 1 and 24096−12^{4096} - 1. The resulting generators are of extremely high quality, faster than current similar alternatives, and generate long-period sequences passing strong statistical tests using only eight logical operations, one addition and one multiplication by a constant

    Enhancing the security of RCIA ultra-lightweight authentication protocol by using Random Number Generator (RNG) technique

    Get PDF
    This study is an attempt to enhance the security of Robust Confidentiality, Integrity, and Authentication (RCIA) ultra-lightweight authentication protocols.In the RCIA protocol, IDs value is sent between reader and tag as a constant value.This makes RCIA susceptible to traceability attack which lead to the privacy issue. In order to overcome this problem, Random Number Generator (RNG) technique based on Bitwise operations has been used in the tag side.The idea of this technique is to change the IDs of a tag on every query session so that it will not stay as a constant value.The implementation of Enhanced RCIA has been conducted by using a simulation.The simulation provided the ability to show that the operations of RCIA protocol as to compare with the enhanced RCIA.The outcome shows that the enhanced RCIA outperforms existing one in terms of privacy

    Enhancing the security of RCIA ultra-lightweight authentication protocol by using random number generator (RNG) technique

    Get PDF
    With the growing demand for low-cost Radio Frequency Identification (RFID) system, there is a necessity to design RFID ultra-lightweight authentication protocols to be compatible with the system and also resistant against possible attacks. However, the existing ultra-lightweight authentication protocols are susceptible to wide range of attacks. This study is an attempt to enhance the security of Robust Confidentiality, Integrity, and Authentication (RCIA) ultra-lightweight authentication protocols especially with regard to privacy issue. In the RCIA protocol, IDs value is sent between reader and tag as a constant value. The constant value will enable attacker to trace the location of the tag which violates the privacy users. In order to enhance the security of RCIA protocol, Random Number Generator (RNG) technique has been used. This technique relies on generating random numbers in the tag side, based on Bitwise operations. The idea of this technique is to change the IDs of a tag on every query session so that it will not stay as a constant value. The implementation of Enhanced RCIA has been conducted by using a simulation. The simulation provided the ability to show that the operations of RCIA protocol as to compare with the enhanced RCIA. The outcome shows that the enhanced RCIA outperforms existing one in terms of privacy

    Self-Organized Structures: Modeling Polistes dominula Nest Construction with Simple Rules

    Get PDF
    The self-organized nest construction behaviors of European paper wasps (Polistes dominula) show potential for adoption in artificial intelligence and robotic systems where centralized control proves challenging. However, P. dominula nest construction mechanisms are not fully understood. This research investigated how nest structures stimulate P. dominula worker action at different stages of nest construction. A novel stochastic site selection model, weighted by simple rules for cell age, height, and wall count, was implemented in a three-dimensional, step-by-step nest construction simulation. The simulation was built on top of a hexagonal coordinate system to improve precision and performance. Real and idealized nest data were used to evaluate simulated nests via two parameters: outer wall counts and compactness numbers. Structures generated with age-based rules were not significantly different from real nest structures along both parameters
    corecore