218 research outputs found

    An Overview of Combinatorial Auctions

    Get PDF
    An auction is combinatorial when bidders can place bids on combinations of items, called “packages,” rather than just individual items. Computer scientists are interested in combinatorial auctions because they are concerned with the expressiveness of bidding languages, as well as the algorithmic aspects of the underlying combinatorial problem. The combinatorial problem has attracted attention from operations researchers, especially those working in combinatorial optimization and mathematical programming, who are fascinated by the idea of applying these tools to auctions. Auctions have been studied extensively by economists, of course. Thus, the newly emerging field of combinatorial auctions lies at the intersection of computer science, operations research, and economics. In this article, we present a brief introduction to combinatorial auctions, based on our book, Combinatorial Auctions (MIT Press, 2006), in which we look at combinatorial auctions from all three perspectives.Auctions

    Auction theory for auction design.

    Get PDF

    The Clock-Proxy Auction: A Practical Combinatorial Auction Design

    Get PDF
    We propose the clock-proxy auction as a practical means for auctioning many related items. A clock auction phase is followed by a last-and-final proxy round. The approach combines the simple and transparent price discovery of the clock auction with the efficiency of the proxy auction. Linear pricing is maintained as long as possible, but then is abandoned in the proxy round to improve efficiency and enhance seller revenues. The approach has many advantages over the simultaneous ascending auction. In particular, the clock-proxy auction has no exposure problem, eliminates incentives for demand reduction, and prevents most collusive bidding strategies.Auctions, Combinatorial Auctions, Market Design, Clock Auctions

    Spectrum auctions: designing markets to benefit the public, industry and the economy

    Get PDF
    Access to the radio spectrum is vital for modern digital communication. It is an essential component for smartphone capabilities, the Cloud, the Internet of Things, autonomous vehicles, and multiple other new technologies. Governments use spectrum auctions to decide which companies should use what parts of the radio spectrum. Successful auctions can fuel rapid innovation in products and services, unlock substantial economic benefits, build comparative advantage across all regions, and create billions of dollars of government revenues. Poor auction strategies can leave bandwidth unsold and delay innovation, sell national assets to firms too cheaply, or create uncompetitive markets with high mobile prices and patchy coverage that stifles economic growth. Corporate bidders regularly complain that auctions raise their costs, while government critics argue that insufficient revenues are raised. The cross-national record shows many examples of both highly successful auctions and miserable failures. Drawing on experience from the UK and other countries, senior regulator Geoffrey Myers explains how to optimise the regulatory design of auctions, from initial planning to final implementation. Spectrum Auctions offers unrivalled expertise for regulators and economists engaged in practical auction design or company executives planning bidding strategies. For applied economists, teachers, and advanced students this book provides unrivalled insights in market design and public management. Providing clear analytical frameworks, case studies of auctions, and stage-by-stage advice, it is essential reading for anyone interested in designing public-interested and successful spectrum auctions

    Combinatorial Clock Auctions: Price Direction and Performance

    Get PDF
    This paper addresses three concerns with ascending price Combinatorial Clock Auc- tions (APCA); price guidance toward e ciency relevant packages, computational bur- den, and susceptibility to collusive bidding. We propose a descending price Combi- natorial Clock Auction (DPCA) with a newly devised pricing strategy to alleviate all of these concerns. Mimicking bidding behavior of human subjects found in previous laboratory experiments, agent-based simulations of a DPCA show improvements in ef- ciency resulting from better price guidance and a reduction in computational burden when compared to an APCA
    • 

    corecore