12,218 research outputs found

    Toward Building Self-Sustaining Groups in PCR-based Tasks through Implicit Coordination: The Case of Heuristic Evaluation

    Get PDF
    Usability flaws found in the later stages of the software development process can be extremely costly to resolve. Accordingly, usability evaluation (UE) is an important, albeit usually expensive, part of development. We report on how the inexpensive UE method of heuristic evaluation (HE) can benefit from collaborative software (CSW), implicit coordination, and principles from collaboration engineering. In our study, 439 novice participants were trained in HE methods and then performed HE. Our results show that traditional nominal HE groups can experience implicit coordination through the collaborative software features of group memory and group awareness. One of the key results is that CSW groups had less duplication of effort than traditional nominal groups; these differences were magnified as group size increased from three to six members. Furthermore, because they coordinated less, traditional nominal groups performed more work in the overall process of HE. We attribute the reduction in duplication for CSW-supported groups to the implicit coordination available to them; CSW-supported groups could see violations input by other group members, but could not directly discuss the violations. These findings not only show the power of implicit coordination in groups, but should dramatically change how HE is conducted. These results may also extend to other evaluation tasks, such as software inspection and usability assessment tasks

    Developing a Mechanism to Study Code Trustworthiness

    Get PDF
    When software code is acquired from a third party or version control repository, programmers assign a level of trust to the code. This trust prompts them to use the code as-is, make minor changes, or rewrite it, which can increase costs and delay deployment. This paper discusses types of degradations to code based on readability and organization expectations and how to present that code as part of a study on programmer trust. Degradations were applied to sixteen of eighteen Java classes that were labeled as acquired from reputable or unknown sources. In a pilot study, participants were asked to determine a level of trustworthiness and whether they would use the code without changes. The results of the pilot study are presented to provide a baseline for the continuance of the study to a larger set of participants and to make adjustments to the presentation environment to improve user experience

    Systems design analysis applied to launch vehicle configuration

    Get PDF
    As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system

    Development and evaluation of a haptic framework supporting telerehabilitation robotics and group interaction

    Get PDF
    Telerehabilitation robotics has grown remarkably in the past few years. It can provide intensive training to people with special needs remotely while facilitating therapists to observe the whole process. Telerehabilitation robotics is a promising solution supporting routine care which can help to transform face-to-face and one-on-one treatment sessions that require not only intensive human resource but are also restricted to some specialised care centres to treatments that are technology-based (less human involvement) and easy to access remotely from anywhere. However, there are some limitations such as network latency, jitter, and delay of the internet that can affect negatively user experience and quality of the treatment session. Moreover, the lack of social interaction since all treatments are performed over the internet can reduce motivation of the patients. As a result, these limitations are making it very difficult to deliver an efficient recovery plan. This thesis developed and evaluated a new framework designed to facilitate telerehabilitation robotics. The framework integrates multiple cutting-edge technologies to generate playful activities that involve group interaction with binaural audio, visual, and haptic feedback with robot interaction in a variety of environments. The research questions asked were: 1) Can activity mediated by technology motivate and influence the behaviour of users, so that they engage in the activity and sustain a good level of motivation? 2) Will working as a group enhance users’ motivation and interaction? 3) Can we transfer real life activity involving group interaction to virtual domain and deliver it reliably via the internet? There were three goals in this work: first was to compare people’s behaviours and motivations while doing the task in a group and on their own; second was to determine whether group interaction in virtual and reala environments was different from each other in terms of performance, engagement and strategy to complete the task; finally was to test out the effectiveness of the framework based on the benchmarks generated from socially assistive robotics literature. Three studies have been conducted to achieve the first goal, two with healthy participants and one with seven autistic children. The first study observed how people react in a challenging group task while the other two studies compared group and individual interactions. The results obtained from these studies showed that the group interactions were more enjoyable than individual interactions and most likely had more positive effects in terms of user behaviours. This suggests that the group interaction approach has the potential to motivate individuals to make more movements and be more active and could be applied in the future for more serious therapy. Another study has been conducted to measure group interaction’s performance in virtual and real environments and pointed out which aspect influences users’ strategy for dealing with the task. The results from this study helped to form a better understanding to predict a user’s behaviour in a collaborative task. A simulation has been run to compare the results generated from the predictor and the real data. It has shown that, with an appropriate training method, the predictor can perform very well. This thesis has demonstrated the feasibility of group interaction via the internet using robotic technology which could be beneficial for people who require social interaction (e.g. stroke patients and autistic children) in their treatments without regular visits to the clinical centres

    An Investigation of Skill Acquisition under Conditions of Augmented Reality

    Get PDF
    Augmented reality is a virtual environment that integrates rendered content with the experience of the real world. There is evidence suggesting that augmented reality provides for important spatial constancy of objects relative to the real world coordinate system and that this quality contributes to rapid skill acquisition. The qualities of simulation, through the use of augmented reality, may be incorporated into actual job activities to produce a condition of just-in-time learning. This may make possible the rapid acquisition of information and reliable completion of novel or infrequently performed tasks by individuals possessing a basic skill-set. The purpose of this research has been to investigate the degree to which the acquisition of a skill is enhanced through the use of an augmented reality training device

    A multidimensional evaluation framework for personal learning environments

    Get PDF
    Evaluating highly dynamic and heterogeneous Personal Learning Environments (PLEs) is extremely challenging. Components of PLEs are selected and configured by individual users based on their personal preferences, needs, and goals. Moreover, the systems usually evolve over time based on contextual opportunities and constraints. As such dynamic systems have no predefined configurations and user interfaces, traditional evaluation methods often fall short or are even inappropriate. Obviously, a host of factors influence the extent to which a PLE successfully supports a learner to achieve specific learning outcomes. We categorize such factors along four major dimensions: technological, organizational, psycho-pedagogical, and social. Each dimension is informed by relevant theoretical models (e.g., Information System Success Model, Community of Practice, self-regulated learning) and subsumes a set of metrics that can be assessed with a range of approaches. Among others, usability and user experience play an indispensable role in acceptance and diffusion of the innovative technologies exemplified by PLEs. Traditional quantitative and qualitative methods such as questionnaire and interview should be deployed alongside emergent ones such as learning analytics (e.g., context-aware metadata) and narrative-based methods. Crucial for maximal validity of the evaluation is the triangulation of empirical findings with multi-perspective (end-users, developers, and researchers), mixed-method (qualitative, quantitative) data sources. The framework utilizes a cyclic process to integrate findings across cases with a cross-case analysis in order to gain deeper insights into the intriguing questions of how and why PLEs work

    Collaborating through sounds: audio-only interaction with diagrams

    Get PDF
    PhDThe widening spectrum of interaction contexts and users’ needs continues to expose the limitations of the Graphical User Interface. But despite the benefits of sound in everyday activities and considerable progress in Auditory Display research, audio remains under-explored in Human- Computer Interaction (HCI). This thesis seeks to contribute to unveiling the potential of using audio in HCI by building on and extending current research on how we interact with and through the auditory modality. Its central premise is that audio, by itself, can effectively support collaborative interaction with diagrammatically represented information. Before exploring audio-only collaborative interaction, two preliminary questions are raised; first, how to translate a given diagram to an alternative form that can be accessed in audio; and second, how to support audio-only interaction with diagrams through the resulting form. An analysis of diagrams that emphasises their properties as external representations is used to address the first question. This analysis informs the design of a multiple perspective hierarchybased model that captures modality-independent features of a diagram when translating it into an audio accessible form. Two user studies then address the second question by examining the feasibility of the developed model to support the activities of inspecting, constructing and editing diagrams in audio. The developed model is then deployed in a collaborative lab-based context. A third study explores audio-only collaboration by examining pairs of participants who use audio as the sole means to communicate, access and edit shared diagrams. The channels through which audio is delivered to the workspace are controlled, and the effect on the dynamics of the collaborations is investigated. Results show that pairs of participants are able to collaboratively construct diagrams through sounds. Additionally, the presence or absence of audio in the workspace, and the way in which collaborators chose to work with audio were found to impact patterns of collaborative organisation, awareness of contribution to shared tasks and exchange of workspace awareness information. This work contributes to the areas of Auditory Display and HCI by providing empirically grounded evidence of how the auditory modality can be used to support individual and collaborative interaction with diagrams.Algerian Ministry of Higher Education and Scientific Research. (MERS
    • …
    corecore