2,572 research outputs found

    Understanding the Elements of Executable Architectures Through a Multi-Dimensional Analysis Framework

    Get PDF
    The objective of this dissertation study is to conduct a holistic investigation into the elements of executable architectures. Current research in the field of Executable Architectures has provided valuable solution-specific demonstrations and has also shown the value derived from such an endeavor. However, a common theory underlying their applications has been missing. This dissertation develops and explores a method for holistically developing an Executable Architecture Specification (EAS), i.e., a meta-model containing both semantic and syntactic information, using a conceptual framework for guiding data coding, analysis, and validation. Utilization of this method resulted in the description of the elements of executable architecture in terms of a set of nine information interrogatives: an executable architecture information ontology. Once the detail-rich EAS was constructed with this ontology, it became possible to define the potential elements of executable architecture through an intermediate level meta-model. The intermediate level meta-model was further refined into an interrogative level meta-model using only the nine information interrogatives, at a very high level of abstraction

    An Evaluation of Inter-Organizational Workflow Modelling Formalisms

    Get PDF
    This paper evaluates the dynamic aspects of the UML in the context of inter-organizational workflows. Two evaluation methodologies are used. The first one is ontological and is based on the BWW (Bunge-Wand-Weber) models. The second validation is based on prototyping and consists in the development of a workflow management system in the aerospace industry. Both convergent and divergent results are found from the two validations. Possible enhancements to the UML formalism are suggested from the convergent results. On the other hand, the divergent results suggest the need for a contextual specification in the BWW models. Ce travail consiste en une évaluation des aspects dynamiques du language UML dans un contexte de workflow inter-organisationnel. Le choix du language par rapport à d'autres est motivé par sa richesse grammaticale lui offrant une très bonne adaptation à ce contexte. L'évaluation se fait par une validation ontologique basée sur les modèles BWW (Bunge-Wand-Weber) et par la réalisation d'un prototype de système de gestion de workflows inter-organisationnels. À partir des résultats convergents obtenus des deux différentes analyses, des améliorations au formalisme UML sont suggérées. D'un autre coté, les analyses divergentes suggèrent une possibilité de spécifier les modèles BWW à des contextes plus particuliers tels que ceux des workflows et permettent également de suggérer d'autres améliorations possibles au langage.Ontology, Conceptual study, Prototype Validation, UML, IS development methods and tools., Ontologie, étude conceptuelle, validation du prototype, UML, méthodes et outils de développement IS

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Linking data and BPMN processes to achieve executable models

    Get PDF
    We describe a formally well founded approach to link data and processes conceptually, based on adopting UML class diagrams to represent data, and BPMN to represent the process. The UML class diagram together with a set of additional process variables, called Artifact, form the information model of the process. All activities of the BPMN process refer to such an information model by means of OCL operation contracts. We show that the resulting semantics while abstract is fully executable. We also provide an implementation of the executor.Peer ReviewedPostprint (author's final draft

    Ein verallgemeinerter Prozess zur Verifikation und Validerung von Modellen und Simulationsergebnissen

    Get PDF
    With technologies increasing rapidly, symbolic, quantitative modeling and computer-based simulation (M&S) have become affordable and easy-to-apply tools in numerous application areas as, e.g., supply chain management, pilot training, car safety improvement, design of industrial buildings, or theater-level war gaming. M&S help to reduce the resources required for many types of projects, accelerate the development of technical systems, and enable the control and management of systems of high complexity. However, as the impact of M&S on the real world grows, the danger of adverse effects of erroneous or unsuitable models or simu-lation results also increases. These effects may range from the delayed delivery of an item ordered by mail to hundreds of avoidable casualties caused by the simulation-based acquisi-tion (SBA) of a malfunctioning communication system for rescue teams. In order to benefit from advancing M&S, countermeasures against M&S disadvantages and drawbacks must be taken. Verification and Validation (V&V) of models and simulation results are intended to ensure that only correct and suitable models and simulation results are used. However, during the development of any technical system including models for simulation, numerous errors may occur. The later they are detected, and the further they have propagated through the model development process, the more resources they require to correct thus, their propaga-tion should be avoided. If the errors remain undetected, and major decisions are based on in-correct or unsuitable models or simulation results, no benefit is gained from M&S, but a dis-advantage. This thesis proposes a structured and rigorous approach to support the verification and valida-tion of models and simulation results by a) the identification of the most significant of the current deficiencies of model develop-ment (design and implementation) and use, including the need for more meaningful model documentation and the lack of quality assurance (QA) as an integral part of the model development process; b) giving an overview of current quality assurance measures in M&S and in related areas. The transferability of concepts like the capability maturity model for software (SW-CMM) and the ISO9000 standard is discussed, and potentials and limits of documents such as the VV&A Recommended Practices Guide of the US Defense Modeling and Simulation Office are identified; c) analysis of quality assurance measures and so called V&V techniques for similarities and differences, to amplify their strengths and to reduce their weaknesses. d) identification and discussion of influences that drive the required rigor and intensity of V&V measures (risk involved in using models and simulation results) on the one hand, and that limit the maximum reliability of V&V activities (knowledge about both the real system and the model) on the other. This finally leads to the specification of a generalized V&V process - the V&V Triangle. It illustrates the dependencies between numerous V&V objectives, which are derived from spe-cific potential errors that occur during model development, and provides guidance for achiev-ing these objectives by the association of V&V techniques, required input, and evidence made available. The V&V Triangle is applied to an M&S sample project, and the lessons learned from evaluating the results lead to the formulation of future research objectives in M&S V&V

    Domain Objects and Microservices for Systems Development: a roadmap

    Full text link
    This paper discusses a roadmap to investigate Domain Objects being an adequate formalism to capture the peculiarity of microservice architecture, and to support Software development since the early stages. It provides a survey of both Microservices and Domain Objects, and it discusses plans and reflections on how to investigate whether a modeling approach suited to adaptable service-based components can also be applied with success to the microservice scenario

    A model driven component agent framework for domain experts

    Get PDF
    Industrial software systems are becoming more complex with a large number of interacting parts distributed over networks. Due to the inherent complexity in the problem domains, most such systems are modified over time to incorporate emerging requirements, making incremental development a suitable approach for building complex systems. In domain specific systems it is the domain experts as end users who identify improvements that better suit their needs. Examples include meteorologists who use weather modeling software, engineers who use control systems and business analysts in business process modeling. Most domain experts are not fluent in systems programming and changes are realised through software engineers. This process hinders the evolution of the system, making it time consuming and costly. We hypothesise that if domain experts are empowered to make some of the system cha nges, it would greatly ease the evolutionary process, thereby making the systems more effective. Agent Oriented Software Engineering (AOSE) is seen as a natural fit for modeling and implementing distributed complex systems. With concepts such as goals and plans, agent systems support easy extension of functionality that facilitates incremental development. Further agents provide an intuitive metaphor that works at a higher level of abstraction compared to the object oriented model. However agent programming is not at a level accessible to domain experts to capitalise on its intuitiveness and appropriateness in building complex systems. We propose a model driven development approach for domain experts that uses visual modeling and automated code generation to simplify the development and evolution of agent systems. Our approach is called the Component Agent Framework for domain-Experts (CAFnE), which builds upon the concepts from Model Driven Development and the Prometheus agent software engineering methodolo gy. CAFnE enables domain experts to work with a graphical representation of the system, which is easier to understand and work with than textual code. The model of the system, updated by domain experts, is then transformed to executable code using a transformation function. CAFnE is supported by a proof-of-concept toolkit that implements the visual modeling, model driven development and code generation. We used the CAFnE toolkit in a user study where five domain experts (weather forecasters) with no prior experience in agent programming were asked to make changes to an existing weather alerting system. Participants were able to rapidly become familiar with CAFnE concepts, comprehend the system's design, make design changes and implement them using the CAFnE toolkit
    • …
    corecore