77 research outputs found

    ExCCC-DCN: A Highly Scalable, Cost-Effective and Engergy-Efficient Data Center Stucture

    Get PDF
    PublishedThis is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Over the past decade, many data centers have been constructed around the world due to the explosive growth of data volume and type. The cost and energy consumption have become the most important challenges of building those data centers. Data centers today use commodity computers and switches instead of high-end servers and interconnections for cost-effectiveness. In this paper, we propose a new type of interconnection networks called Exchanged Cube-Connected Cycles (ExCCC). The ExCCC network is an extension of Exchanged Hypercube (EH) network by replacing each node with a cycle. The EH network is based on link removal from a Hypercube network, which makes the EH network more cost-effective as it scales up. After analyzing the topological properties of ExCCC, we employ commodity switches to construct a new class of data center network models, namely ExCCC-DCN, by leveraging the advantages of the ExCCC architecture. The analysis and experimental results demonstrate that the proposed ExCCC-DCN models significantly outperform four state-of-the-art data center network models in terms of the total cost, power consumption, scalability, and other static characteristics. It achieves the goals of low cost, low energy consumption, high network throughput, and high scalability simultaneously.This work is supported by the National Natural Science Foundation (NSF) of China under Grant (No. 61572232, and No. 61272073), the key program of Natural Science Foundation of Guangdong Province (No.S2013020012865), and the Fundamental Research Funds for the Central Universities

    A high-performance communication topology for decentralized protocols

    Get PDF
    Preserving transaction atomicity and ensuring its commitment is key to the maintenance of data integrity in a distributed database. The distributed consensus protocol is a prominent example of a mechanism used to accomplish safe commitment of a distributed transaction. These protocols are based primarily on repeated message exchange among all sites/nodes and their performance is characterized not only by the number of these messages but also by the underlying communication topology. This thesis proposes a measure of performance known as average message complexity and proposes a communication structure based on folded even graphs called the Folded Even Network (FEN). Performance of FEN is compared to other known structures and is shown to outperform them for various values of the number of nodes in the network. It is also shown that large topologies can be generated by connecting multiple FENs together. The expanded structure is also shown to have the same complexity as a single FEN

    Efficient processor management strategies for multicomputer systems

    Get PDF
    Multicomputers are cost-effective alternatives to the conventional supercomputers. Contemporary processor management schemes tend to underutilize the processors and leave many of the processors in the system idle while jobs are waiting for execution;Instead of designing faster processors or interconnection networks, a substantial performance improvement can be obtained by implementing better processor management strategies. This dissertation studies the performance issues related to the processor management schemes and proposes several ways to enhance the multicomputer systems by means of processor management. The proposed schemes incorporate the concepts of size-reduction, non-contiguous allocation, as well as job migration. Job scheduling using a bypass-queue is also studied. All the proposed schemes are proven effective in improving the system performance via extensive simulations. Each proposed scheme has different implementation cost and constraints. In order to take advantage of these schemes, judicious selection of system parameters is important and is discussed

    Shortest Path Routing on the Hypercube with Faulty Nodes

    Get PDF
    Interconnection networks are widely used in parallel computers. There are many topologies for interconnection networks and the hypercube is one of the most popular networks. There are a variety of different routing paradigms that need to be investigated on the hypercube. In this thesis we investigate the shortest path routing between two nodes on the hypercube when some nodes are faulty and cannot be used. In this thesis the shortest path between two nodes is considered as the Hamming distance of them. Regarding the shortest path problem in a faulty hypercube, some efficient algorithms have been proposed when each processor (node) has limited information regarding the status of other processors (whether they are faulty or not). There are also some proposed algorithms for the case where there is no limitation on the data of each processor but they are not efficient and are exponential in terms of number of faulty nodes and dimension of the hypercube. To check whether there is a shortest path between two given nodes in a faulty hypercube, we propose a polynomial algorithm with time complexity of O(n^2 * m^2) where n is the dimension of the hypercube and m is the number of faulty nodes. Our algorithm only requires the source node to know the state of all other nodes. The proposed algorithm first checks whether there is a shortest path from the source node to the target node and then it can construct it efficiently. Our idea is based on a so-called ordering and permutation model of paths in the hypercube. We use a constructive approach to find the path which is a permutation as well. We then use inclusion-exclusion and dynamic programming techniques to make our method efficient. We also propose an algorithm for counting all possible shortest paths in the hypercube

    Parallel Architectures and Parallel Algorithms for Integrated Vision Systems

    Get PDF
    Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems

    Non-minimal adaptive routing for efficient interconnection networks

    Get PDF
    RESUMEN: La red de interconexión es un concepto clave de los sistemas de computación paralelos. El primer aspecto que define una red de interconexión es su topología. Habitualmente, las redes escalables y eficientes en términos de coste y consumo energético tienen bajo diámetro y se basan en topologías que encaran el límite de Moore y en las que no hay diversidad de caminos mínimos. Una vez definida la topología, quedando implícitamente definidos los límites de rendimiento de la red, es necesario diseñar un algoritmo de enrutamiento que se acerque lo máximo posible a esos límites y debido a la ausencia de caminos mínimos, este además debe explotar los caminos no mínimos cuando el tráfico es adverso. Estos algoritmos de enrutamiento habitualmente seleccionan entre rutas mínimas y no mínimas en base a las condiciones de la red. Las rutas no mínimas habitualmente se basan en el algoritmo de balanceo de carga propuesto por Valiant, esto implica que doblan la longitud de las rutas mínimas y por lo tanto, la latencia soportada por los paquetes se incrementa. En cuanto a la tecnología, desde su introducción en entornos HPC a principios de los años 2000, Ethernet ha sido usado en un porcentaje representativo de los sistemas. Esta tesis introduce una implementación realista y competitiva de una red escalable y sin pérdidas basada en dispositivos de red Ethernet commodity, considerando topologías de bajo diámetro y bajo consumo energético y logrando un ahorro energético de hasta un 54%. Además, propone un enrutamiento sobre la citada arquitectura, en adelante QCN-Switch, el cual selecciona entre rutas mínimas y no mínimas basado en notificaciones de congestión explícitas. Una vez implementada la decisión de enrutar siguiendo rutas no mínimas, se introduce un enrutamiento adaptativo en fuente capaz de adaptar el número de saltos en las rutas no mínimas. Este enrutamiento, en adelante ACOR, es agnóstico de la topología y mejora la latencia en hasta un 28%. Finalmente, se introduce un enrutamiento dependiente de la topología, en adelante LIAN, que optimiza el número de saltos de las rutas no mínimas basado en las condiciones de la red. Los resultados de su evaluación muestran que obtiene una latencia cuasi óptima y mejora el rendimiento de algoritmos de enrutamiento actuales reduciendo la latencia en hasta un 30% y obteniendo un rendimiento estable y equitativo.ABSTRACT: Interconnection network is a key concept of any parallel computing system. The first aspect to define an interconnection network is its topology. Typically, power and cost-efficient scalable networks with low diameter rely on topologies that approach the Moore bound in which there is no minimal path diversity. Once the topology is defined, the performance bounds of the network are determined consequently, so a suitable routing algorithm should be designed to accomplish as much as possible of those limits and, due to the lack of minimal path diversity, it must exploit non-minimal paths when the traffic pattern is adversarial. These routing algorithms usually select between minimal and non-minimal paths based on the network conditions, where the non-minimal paths are built according to Valiant load-balancing algorithm. This implies that these paths double the length of minimal ones and then the latency supported by packets increases. Regarding the technology, from its introduction in HPC systems in the early 2000s, Ethernet has been used in a significant fraction of the systems. This dissertation introduces a realistic and competitive implementation of a scalable lossless Ethernet network for HPC environments considering low-diameter and low-power topologies. This allows for up to 54% power savings. Furthermore, it proposes a routing upon the cited architecture, hereon QCN-Switch, which selects between minimal and non-minimal paths per packet based on explicit congestion notifications instead of credits. Once the miss-routing decision is implemented, it introduces two mechanisms regarding the selection of the intermediate switch to develop a source adaptive routing algorithm capable of adapting the number of hops in the non-minimal paths. This routing, hereon ACOR, is topology-agnostic and improves average latency in all cases up to 28%. Finally, a topology-dependent routing, hereon LIAN, is introduced to optimize the number of hops in the non-minimal paths based on the network live conditions. Evaluations show that LIAN obtains almost-optimal latency and outperforms state-of-the-art adaptive routing algorithms, reducing latency by up to 30.0% and providing stable throughput and fairness.This work has been supported by the Spanish Ministry of Education, Culture and Sports under grant FPU14/02253, the Spanish Ministry of Economy, Industry and Competitiveness under contracts TIN2010-21291-C02-02, TIN2013-46957-C2-2-P, and TIN2013-46957-C2-2-P (AEI/FEDER, UE), the Spanish Research Agency under contract PID2019-105660RBC22/AEI/10.13039/501100011033, the European Union under agreements FP7-ICT-2011- 7-288777 (Mont-Blanc 1) and FP7-ICT-2013-10-610402 (Mont-Blanc 2), the University of Cantabria under project PAR.30.P072.64004, and by the European HiPEAC Network of Excellence through an internship grant supported by the European Union’s Horizon 2020 research and innovation program under grant agreement No. H2020-ICT-2015-687689
    corecore