1,409 research outputs found

    Automatic vs Manual Provenance Abstractions: Mind the Gap

    Full text link
    In recent years the need to simplify or to hide sensitive information in provenance has given way to research on provenance abstraction. In the context of scientific workflows, existing research provides techniques to semi automatically create abstractions of a given workflow description, which is in turn used as filters over the workflow's provenance traces. An alternative approach that is commonly adopted by scientists is to build workflows with abstractions embedded into the workflow's design, such as using sub-workflows. This paper reports on the comparison of manual versus semi-automated approaches in a context where result abstractions are used to filter report-worthy results of computational scientific analyses. Specifically; we take a real-world workflow containing user-created design abstractions and compare these with abstractions created by ZOOM UserViews and Workflow Summaries systems. Our comparison shows that semi-automatic and manual approaches largely overlap from a process perspective, meanwhile, there is a dramatic mismatch in terms of data artefacts retained in an abstracted account of derivation. We discuss reasons and suggest future research directions.Comment: Preprint accepted to the 2016 workshop on the Theory and Applications of Provenance, TAPP 201

    Semantics of reactive systems : comparison and full abstraction

    Get PDF

    Challenging the Computational Metaphor: Implications for How We Think

    Get PDF
    This paper explores the role of the traditional computational metaphor in our thinking as computer scientists, its influence on epistemological styles, and its implications for our understanding of cognition. It proposes to replace the conventional metaphor--a sequence of steps--with the notion of a community of interacting entities, and examines the ramifications of such a shift on these various ways in which we think

    Enhancing the Compilation of Synchronous Dataflow Programs with a Combined Numerical-Boolean Abstraction

    Get PDF
    RR version = http://hal.inria.fr/hal-00780521/enInternational audienceIn this paper, we propose an enhancement of the compilation of synchronous programs with a combined numerical-Boolean abstraction. While our approach applies to synchronous dataflow languages in general, here, we consider the SIGNAL language for illustration. In the new abstraction, every signal in a program is associated with a pair of the form ( clock, value ), where clock is a Boolean function and value is a Boolean or numeric function. Given the performance level reached by recent progress in Satisfiability Modulo Theory (SMT), we use an SMT solver to reason on this abstraction. Through sample examples, we show how our solution is used to determine absence of reaction captured by empty clocks; mutual exclusion captured by two or more clocks whose associated signals never occur at the same time; or hierarchical control of component activations via clock inclusion. We also show that the analysis improves the quality of the code generated automatically by a compiler, e.g., a code with smaller footprint, or a code executed more efficiently thanks to optimizations enabled by the new abstraction. The implementation of the whole approach includes a translator of synchronous programs towards the standard input format of SMT solvers, and an ad hoc SMT solver that integrates advanced functionalities to cope with the issues of interest in this wor

    Restructuring the rotor analysis program C-60

    Get PDF
    The continuing evolution of the rotary wing industry demands increasing analytical capabilities. To keep up with this demand, software must be structured to accommodate change. The approach discussed for meeting this demand is to restructure an existing analysis. The motivational factors, basic principles, application techniques, and practical lessons from experience with this restructuring effort are reviewed

    HOP: a process model for synchronous hardware systems

    Get PDF
    technical reportModules in HOP are black-boxes that are understood and used only in terms of their interface. The interface consists of d a t a ports, events, and a protocol specification that uses events and asserts/queries values to / from ports. Events are realized as different combinations of control wires or as predicates defined over data conduits. Module await either command events or status events. Data conduits are realized as bus structures that deliver the same data items at the receiving end as items sent at t h e sending end (i.e. the busses do not have any wire-permutations, tappings, etc.). HOP is useful for writing both requirements (a priori) specifications and design (a posteriori) specifications. The manner in which requirements are expressed has usually no bearing on the actual implementation chosen later. Design specifications capture known facts about a system that has been built or has been designed in detail. In a HOP based design methodology, design proceeds hierarchically, and on many occasions (but not always) top-down. For most large systems, t h e requirements specification consists of the specification of a collection of modules and not one module; for these systems, the single module view is only derived a posteriori
    • …
    corecore