8,113 research outputs found

    An exactly conservative particle method for one dimensional scalar conservation laws

    Full text link
    A particle scheme for scalar conservation laws in one space dimension is presented. Particles representing the solution are moved according to their characteristic velocities. Particle interaction is resolved locally, satisfying exact conservation of area. Shocks stay sharp and propagate at correct speeds, while rarefaction waves are created where appropriate. The method is variation diminishing, entropy decreasing, exactly conservative, and has no numerical dissipation away from shocks. Solutions, including the location of shocks, are approximated with second order accuracy. Source terms can be included. The method is compared to CLAWPACK in various examples, and found to yield a comparable or better accuracy for similar resolutions.Comment: 29 pages, 21 figure

    A rarefaction-tracking method for hyperbolic conservation laws

    Full text link
    We present a numerical method for scalar conservation laws in one space dimension. The solution is approximated by local similarity solutions. While many commonly used approaches are based on shocks, the presented method uses rarefaction and compression waves. The solution is represented by particles that carry function values and move according to the method of characteristics. Between two neighboring particles, an interpolation is defined by an analytical similarity solution of the conservation law. An interaction of particles represents a collision of characteristics. The resulting shock is resolved by merging particles so that the total area under the function is conserved. The method is variation diminishing, nevertheless, it has no numerical dissipation away from shocks. Although shocks are not explicitly tracked, they can be located accurately. We present numerical examples, and outline specific applications and extensions of the approach.Comment: 21 pages, 7 figures. Similarity 2008 conference proceeding

    A characteristic particle method for traffic flow simulations on highway networks

    Full text link
    A characteristic particle method for the simulation of first order macroscopic traffic models on road networks is presented. The approach is based on the method "particleclaw", which solves scalar one dimensional hyperbolic conservations laws exactly, except for a small error right around shocks. The method is generalized to nonlinear network flows, where particle approximations on the edges are suitably coupled together at the network nodes. It is demonstrated in numerical examples that the resulting particle method can approximate traffic jams accurately, while only devoting a few degrees of freedom to each edge of the network.Comment: 15 pages, 5 figures. Accepted to the proceedings of the Sixth International Workshop Meshfree Methods for PDE 201

    Solving One Dimensional Scalar Conservation Laws by Particle Management

    Full text link
    We present a meshfree numerical solver for scalar conservation laws in one space dimension. Points representing the solution are moved according to their characteristic velocities. Particle interaction is resolved by purely local particle management. Since no global remeshing is required, shocks stay sharp and propagate at the correct speed, while rarefaction waves are created where appropriate. The method is TVD, entropy decreasing, exactly conservative, and has no numerical dissipation. Difficulties involving transonic points do not occur, however inflection points of the flux function pose a slight challenge, which can be overcome by a special treatment. Away from shocks the method is second order accurate, while shocks are resolved with first order accuracy. A postprocessing step can recover the second order accuracy. The method is compared to CLAWPACK in test cases and is found to yield an increase in accuracy for comparable resolutions.Comment: 15 pages, 6 figures. Submitted to proceedings of the Fourth International Workshop Meshfree Methods for Partial Differential Equation

    An exact particle method for scalar conservation laws and its application to stiff reaction kinetics

    Full text link
    An "exact" method for scalar one-dimensional hyperbolic conservation laws is presented. The approach is based on the evolution of shock particles, separated by local similarity solutions. The numerical solution is defined everywhere, and is as accurate as the applied ODE solver. Furthermore, the method is extended to stiff balance laws. A special correction approach yields a method that evolves detonation waves at correct velocities, without resolving their internal dynamics. The particle approach is compared to a classical finite volume method in terms of numerical accuracy, both for conservation laws and for an application in reaction kinetics.Comment: 14 page, 7 figures, presented in the Fifth International Workshop on Meshfree Methods for Partial Differential Equation

    Equal-area method for scalar conservation laws

    Full text link
    We study one-dimensional conservation law. We develop a simple numerical method for computing the unique entropy admissible weak solution to the initial problem. The method basis on the equal-area principle and gives the solution for given time directly.Comment: 10 pages, 7 figure

    Astrophysical Weighted Particle Magnetohydrodynamics

    Full text link
    This paper presents applications of weighted meshless scheme for conservation laws to the Euler equations and the equations of ideal magnetohydrodynamics. The divergence constraint of the latter is maintained to the truncation error by a new meshless divergence cleaning procedure. The physics of the interaction between the particles is described by an one-dimensional Riemann problem in a moving frame. As a result, necessary diffusion which is required to treat dissipative processes is added automatically. As a result, our scheme has no free parameters that controls the physics of inter-particle interaction, with the exception of the number of the interacting neighbours which control the resolution and accuracy. The resulting equations have the form similar to SPH equations, and therefore existing SPH codes can be used to implement the weighed particle scheme. The scheme is validated in several hydrodynamic and MHD test cases. In particular, we demonstrate for the first time the ability of a meshless MHD scheme to model magneto-rotational instability in accretion disks.Comment: 27 pages, 24 figures, 1 column, submitted to MNRAS, hi-res version can be obtained at http://www.strw.leidenuniv.nl/~egaburov/wpmhd.pd

    Between Laws and Models: Some Philosophical Morals of Lagrangian Mechanics

    Get PDF
    I extract some philosophical morals from some aspects of Lagrangian mechanics. (A companion paper will present similar morals from Hamiltonian mechanics and Hamilton-Jacobi theory.) One main moral concerns methodology: Lagrangian mechanics provides a level of description of phenomena which has been largely ignored by philosophers, since it falls between their accustomed levels--``laws of nature'' and ``models''. Another main moral concerns ontology: the ontology of Lagrangian mechanics is both more subtle and more problematic than philosophers often realize. The treatment of Lagrangian mechanics provides an introduction to the subject for philosophers, and is technically elementary. In particular, it is confined to systems with a finite number of degrees of freedom, and for the most part eschews modern geometry. But it includes a presentation of Routhian reduction and of Noether's ``first theorem''.Comment: 106 pages, no figure
    • …
    corecore