776 research outputs found

    The MVA Priority Approximation

    Get PDF
    A Mean Value Analysis (MVA) approximation is presented for computing the average performance measures of closed-, open-, and mixed-type multiclass queuing networks containing Preemptive Resume (PR) and nonpreemptive Head-Of-Line (HOL) priority service centers. The approximation has essentially the same storage and computational requirements as MVA, thus allowing computationally efficient solutions of large priority queuing networks. The accuracy of the MVA approximation is systematically investigated and presented. It is shown that the approximation can compute the average performance measures of priority networks to within an accuracy of 5 percent for a large range of network parameter values. Accuracy of the method is shown to be superior to that of Sevcik's shadow approximation

    Approximate analysis of queueing network models

    Get PDF

    Maximum Likelihood Estimation of Closed Queueing Network Demands from Queue Length Data

    Get PDF
    Resource demand estimation is essential for the application of analyical models, such as queueing networks, to real-world systems. In this paper, we investigate maximum likelihood (ML) estimators for service demands in closed queueing networks with load-independent and load-dependent service times. Stemming from a characterization of necessary conditions for ML estimation, we propose new estimators that infer demands from queue-length measurements, which are inexpensive metrics to collect in real systems. One advantage of focusing on queue-length data compared to response times or utilizations is that confidence intervals can be rigorously derived from the equilibrium distribution of the queueing network model. Our estimators and their confidence intervals are validated against simulation and real system measurements for a multi-tier application

    Validity of heavy traffic steady-state approximations in generalized Jackson Networks

    Full text link
    We consider a single class open queueing network, also known as a generalized Jackson network (GJN). A classical result in heavy-traffic theory asserts that the sequence of normalized queue length processes of the GJN converge weakly to a reflected Brownian motion (RBM) in the orthant, as the traffic intensity approaches unity. However, barring simple instances, it is still not known whether the stationary distribution of RBM provides a valid approximation for the steady-state of the original network. In this paper we resolve this open problem by proving that the re-scaled stationary distribution of the GJN converges to the stationary distribution of the RBM, thus validating a so-called ``interchange-of-limits'' for this class of networks. Our method of proof involves a combination of Lyapunov function techniques, strong approximations and tail probability bounds that yield tightness of the sequence of stationary distributions of the GJN.Comment: Published at http://dx.doi.org/10.1214/105051605000000638 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The evaluation of computer performance by means of state-dependent queueing network models

    Get PDF
    Imperial Users onl

    Integrated performance evaluation of extended queueing network models with line

    Get PDF
    Despite the large literature on queueing theory and its applications, tool support to analyze these models ismostly focused on discrete-event simulation and mean-value analysis (MVA). This circumstance diminishesthe applicability of other types of advanced queueing analysis methods to practical engineering problems,for example analytical methods to extract probability measures useful in learning and inference. In this toolpaper, we present LINE 2.0, an integrated software package to specify and analyze extended queueingnetwork models. This new version of the tool is underpinned by an object-oriented language to declarea fairly broad class of extended queueing networks. These abstractions have been used to integrate in acoherent setting over 40 different simulation-based and analytical solution methods, facilitating their use inapplications

    Nested Fork-Join Queuing Networks and Their Application to Mobility Airfield Operations Analysis

    Get PDF
    A single-chain nested fork-join queuing network (FJQN) model of mobility airfield ground processing is proposed. In order to analyze the queuing network model, advances on two fronts are made. First, a general technique for decomposing nested FJQNs with probabilistic forks is proposed, which consists of incorporating feedback loops into the embedded Markov chain of the synchronization station, then using Marie\u27s Method to decompose the network. Numerical studies show this strategy to be effective, with less than two percent relative error in the approximate performance measures in most realistic cases. The second contribution is the identification of a quick, efficient method for solving for the stationary probabilities of the λn/Ck/r/N queue. Unpreconditioned Conjugate Gradient Squared is shown to be the method of choice in the context of decomposition using Marie\u27s Method, thus broadening the class of networks where the method is of practical use. The mobility airfield model is analyzed using the strategies described above, and accurate approximations of airfield performance measures are obtained in a fraction of the time needed for a simulation study. The proposed airfield modeling approach is especially effective for quick-look studies and sensitivity analysis

    A Simple, Practical Prioritization Scheme for a Job Shop Processing Multiple Job Types

    Get PDF
    The maintenance, repair, and overhaul (MRO) process is used to recondition equipment in the railroad, off-shore drilling, aircraft, and shipping industries. In the typical MRO process, the equipment is disassembled into component parts and these parts are routed to back-shops for repair. Repaired parts are returned for reassembling the equipment. Scheduling the back-shop for smooth flow often requires prioritizing the repair of component parts from different original assemblies at different machines. To enable such prioritization, we model the back-shop as a multi-class queueing network with a ConWIP execution system and introduce a new priority scheme to maximize the system performance. In this scheme, we identify the bottleneck machine based on overall workload and classify machines into two categories: the bottleneck machine and the non-bottleneck machine(s). Assemblies with the lowest cycle time receive the highest priority on the bottleneck machine and the lowest priority on non-bottleneck machine(s). Our experimental results show that this priority scheme increases the system performance by lowering the average cycle times without adversely impacting the total throughput. The contribution of this thesis consists primarily of three parts. First, we develop a simple priority scheme for multi-class, multi-server, ConWIP queueing systems with the disassembly/reassembly feature so that schedulers for a job-shop environment would be able to know which part should be given priority, in what order and where. Next, we provide an exact analytical solution to a two-class, two-server closed queueing model with mixed non-preemptive priority scheme. The queueing network model we study has not been analyzed in the literature, and there are no existing models that address the underlying problem of deciding prioritization by job types to maximize the system performance. Finally, we explore conditions under which the non-preemptive priority discipline can be approximated by a preemptive priority discipline
    • …
    corecore