3,156 research outputs found

    The synergistic effect of operational research and big data analytics in greening container terminal operations: a review and future directions

    Get PDF
    Container Terminals (CTs) are continuously presented with highly interrelated, complex, and uncertain planning tasks. The ever-increasing intensity of operations at CTs in recent years has also resulted in increasing environmental concerns, and they are experiencing an unprecedented pressure to lower their emissions. Operational Research (OR), as a key player in the optimisation of the complex decision problems that arise from the quay and land side operations at CTs, has been therefore presented with new challenges and opportunities to incorporate environmental considerations into decision making and better utilise the ‘big data’ that is continuously generated from the never-stopping operations at CTs. The state-of-the-art literature on OR's incorporation of environmental considerations and its interplay with Big Data Analytics (BDA) is, however, still very much underdeveloped, fragmented, and divergent, and a guiding framework is completely missing. This paper presents a review of the most relevant developments in the field and sheds light on promising research opportunities for the better exploitation of the synergistic effect of the two disciplines in addressing CT operational problems, while incorporating uncertainty and environmental concerns efficiently. The paper finds that while OR has thus far contributed to improving the environmental performance of CTs (rather implicitly), this can be much further stepped up with more explicit incorporation of environmental considerations and better exploitation of BDA predictive modelling capabilities. New interdisciplinary research at the intersection of conventional CT optimisation problems, energy management and sizing, and net-zero technology and energy vectors adoption is also presented as a prominent line of future research

    Strategies for dynamic appointment making by container terminals

    Get PDF
    We consider a container terminal that has to make appointments with barges dynamically, in real-time, and partly automatic. The challenge for the terminal is to make appointments with only limited knowledge about future arriving barges, and in the view of uncertainty and disturbances, such as uncertain arrival and handling times, as well as cancellations and no-shows. We illustrate this problem using an innovative implementation project which is currently running in the Port of Rotterdam. This project aims to align barge rotations and terminal quay schedules by means of a multi-agent system. In this\ud paper, we take the perspective of a single terminal that will participate in this planning system, and focus on the decision making capabilities of its intelligent agent. We focus on the question how the terminal operator can optimize, on an operational level, the utilization of its quay resources, while making reliable appointments with barges, i.e., with a guaranteed departure time. We explore two approaches: (i) an analytical approach based on the value of having certain intervals within the schedule and (ii) an approach based on sources of exibility that are naturally available to the terminal. We use simulation to get insight in the benefits of these approaches. We conclude that a major increase in utilization degree could be achieved only by deploying the sources of exibility, without harming the waiting time of barges too much

    Exact and Heuristic Methods for Integrated Container Terminal Problems

    Get PDF

    Review on integrated scheduling of quay crane and yard truck

    Get PDF
    With the development of port shipping trade, the increasing container throughput has brought pressure to port operation. Research literatures on quay crane scheduling, yard truck scheduling and integrated scheduling of quay crane and yard truck are reviewed in turn. Combined with the current research, the future research direction of integrated scheduling of quay crane and yard truck is proposed

    Modelling of integrated vehicle scheduling and container storage problems in unloading process at an automated container terminal

    Get PDF
    Effectively scheduling vehicles and allocating storage locations for containers are two important problems in container terminal operations. Early research efforts, however, are devoted to study them separately. This paper investigates the integration of the two problems focusing on the unloading process in an automated container terminal, where all or part of the equipment are built in automation. We formulate the integrated problem as a mixed-integer programming (MIP) model to minimise ship’s berth time. We determine the detailed schedules for all vehicles to be used during the unloading process and the storage location to be assigned for all containers. A series of experiments are carried out for small-sized problems by using commercial software. A genetic algorithm (GA) is designed for solving large-sized problems. The solutions from the GA for the small-sized problems are compared with the optimal solutions obtained from the commercial software to verify the effectiveness of the GA. The computational results show that the model and solution methods proposed in this paper are efficient in solving the integrated unloading problem for the automated container terminal

    Review of Technological Processes at the Container Terminal

    Get PDF
    The aim of this paper work is to explore technological processes which occur on container terminal.Each of them represents a sort of a challenge for a manager of every port, who is responsible for a work organization. The way of running technological processes needs to be organized by minimizing the time ships spend on a dock, including balanced and economical use of port capacity as well as maximum flow of containers. Tracking efficiency of port capacities is shown on an example of container terminal of Rijeka port. By applying quantitative methods, queuing theory, it is been explored whether the capacity of container terminals satisfy existing trade as well as whether the same are sufficient for future increase of trade in terms of expansion of existing or better organization of technological processes

    Adaptive autotuning mathematical approaches for integrated optimization of automated container terminal

    Get PDF
    With the development of automated container terminals (ACTs), reducing the loading and unloading time of operation and improving the working efficiency and service level have become the key point. Taking into account the actual operation mode of loading and unloading in ACTs, a mixed integer programming model is adopted in this study to minimize the loading and unloading time of ships, which can optimize the integrated scheduling of the gantry cranes (QCs), automated guided vehicles (AGVs), and automated rail-mounted gantries (ARMGs) in automated terminals. Various basic metaheuristic and improved hybrid algorithms were developed to optimize the model, proving the effectiveness of the model to obtain an optimized scheduling scheme by numerical experiments and comparing the different performances of algorithms. The results show that the hybrid GA-PSO algorithm with adaptive autotuning approaches by fuzzy control is superior to other algorithms in terms of solution time and quality, which can effectively solve the problem of integrated scheduling of automated container terminals to improve efficiency.info:eu-repo/semantics/publishedVersio

    An evolutionary approach to a combined mixed integer programming model of seaside operations as arise in container ports

    Get PDF
    This paper puts forward an integrated optimisation model that combines three distinct problems, namely berth allocation, quay crane assignment, and quay crane scheduling that arise in container ports. Each one of these problems is difficult to solve in its own right. However, solving them individually leads almost surely to sub-optimal solutions. Hence, it is desirable to solve them in a combined form. The model is of the mixed-integer programming type with the objective being to minimize the tardiness of vessels and reduce the cost of berthing. Experimental results show that relatively small instances of the proposed model can be solved exactly using CPLEX. Large scale instances, however, can only be solved in reasonable times using heuristics. Here, an implementation of the genetic algorithm is considered. The effectiveness of this implementation is tested against CPLEX on small to medium size instances of the combined model. Larger size instances were also solved with the genetic algorithm, showing that this approach is capable of finding the optimal or near optimal solutions in realistic times
    corecore