1,643 research outputs found

    An Exact Branch-and-Price Algorithm for Scheduling Rescue Units during Disaster Response

    Get PDF
    In disaster operations management, a challenging task for rescue organizations occurs when they have to assign and schedule their rescue units to emerging incidents under time pressure in order to reduce the overall resulting harm. Of particular importance in practical scenarios is the need to consider collaboration of rescue units. This task has hardly been addressed in the literature. We contribute to both modeling and solving this problem by (1) conceptualizing the situation as a type of scheduling problem, (2) modeling it as a binary linear minimization problem, (3) suggesting a branch-and-price algorithm, which can serve as both an exact and heuristic solution procedure, and (4) conducting computational experiments - including a sensitivity analysis of the effects of exogenous model parameters on execution times and objective value improvements over a heuristic suggested in the literature - for different practical disaster scenarios. The results of our computational experiments show that most problem instances of practically feasible size can be solved to optimality within ten minutes. Furthermore, even when our algorithm is terminated once the first feasible solution has been found, this solution is in almost all cases competitive to the optimal solution and substantially better than the solution obtained by the best known algorithm from the literature. This performance of our branch-and-price algorithm enables rescue organizations to apply our procedure in practice, even when the time for decision making is limited to a few minutes. By addressing a very general type of scheduling problem, our approach applies to various scheduling situations

    High-Performance Computing for Scheduling Decision Support: A Parallel Depth-First Search Heuristic

    Get PDF
    Many academic disciplines - including information systems, computer science, and operations management - face scheduling problems as important decision making tasks. Since many scheduling problems are NP-hard in the strong sense, there is a need for developing solution heuristics. For scheduling problems with setup times on unrelated parallel machines, there is limited research on solution methods and to the best of our knowledge, parallel computer architectures have not yet been taken advantage of. We address this gap by proposing and implementing a new solution heuristic and by testing different parallelization strategies. In our computational experiments, we show that our heuristic calculates near-optimal solutions even for large instances and that computing time can be reduced substantially by our parallelization approach

    OPTIMIZATION MODELS AND METHODOLOGIES TO SUPPORT EMERGENCY PREPAREDNESS AND POST-DISASTER RESPONSE

    Get PDF
    This dissertation addresses three important optimization problems arising during the phases of pre-disaster emergency preparedness and post-disaster response in time-dependent, stochastic and dynamic environments. The first problem studied is the building evacuation problem with shared information (BEPSI), which seeks a set of evacuation routes and the assignment of evacuees to these routes with the minimum total evacuation time. The BEPSI incorporates the constraints of shared information in providing on-line instructions to evacuees and ensures that evacuees departing from an intermediate or source location at a mutual point in time receive common instructions. A mixed-integer linear program is formulated for the BEPSI and an exact technique based on Benders decomposition is proposed for its solution. Numerical experiments conducted on a mid-sized real-world example demonstrate the effectiveness of the proposed algorithm. The second problem addressed is the network resilience problem (NRP), involving an indicator of network resilience proposed to quantify the ability of a network to recover from randomly arising disruptions resulting from a disaster event. A stochastic, mixed integer program is proposed for quantifying network resilience and identifying the optimal post-event course of action to take. A solution technique based on concepts of Benders decomposition, column generation and Monte Carlo simulation is proposed. Experiments were conducted to illustrate the resilience concept and procedure for its measurement, and to assess the role of network topology in its magnitude. The last problem addressed is the urban search and rescue team deployment problem (USAR-TDP). The USAR-TDP seeks an optimal deployment of USAR teams to disaster sites, including the order of site visits, with the ultimate goal of maximizing the expected number of saved lives over the search and rescue period. A multistage stochastic program is proposed to capture problem uncertainty and dynamics. The solution technique involves the solution of a sequence of interrelated two-stage stochastic programs with recourse. A column generation-based technique is proposed for the solution of each problem instance arising as the start of each decision epoch over a time horizon. Numerical experiments conducted on an example of the 2010 Haiti earthquake are presented to illustrate the effectiveness of the proposed approach

    Online routing and scheduling of search-and-rescue teams

    Get PDF
    We study how to allocate and route search-and-rescue (SAR) teams to areas with trapped victims in a coordinated manner after a disaster. We propose two online strategies for these time-critical decisions considering the uncertainty about the operation times required to rescue the victims and the condition of the roads that may delay the operations. First, we follow the theoretical competitive analysis approach that takes a worst-case perspective and prove lower bounds on the competitive ratio of the two variants of the defined online problem with makespan and weighted latency objectives. Then, we test the proposed online strategies and observe their good performance against the offline optimal solutions on randomly generated instances

    Improved whale swarm algorithm for solving material emergency dispatching problem with changing road conditions

    Get PDF
    To overcome the problem of easily falling into local extreme values of the whale swarm algorithm to solve the material emergency dispatching problem with changing road conditions, an improved whale swarm algorithm is proposed. First, an improved scan and Clarke-Wright algorithm is used to obtain the optimal vehicle path at the initial time. Then, the group movement strategy is designed to generate offspring individuals with an improved quality for refining the updating ability of individuals in the population. Finally, in order to maintain population diversity, a different weights strategy is used to expand individual search spaces, which can prevent individuals from prematurely gathering in a certain area. The experimental results show that the performance of the improved whale swarm algorithm is better than that of the ant colony system and the adaptive chaotic genetic algorithm, which can minimize the cost of material distribution and effectively eliminate the adverse effects caused by the change of road conditions

    Mathematical Methods and Operation Research in Logistics, Project Planning, and Scheduling

    Get PDF
    In the last decade, the Industrial Revolution 4.0 brought flexible supply chains and flexible design projects to the forefront. Nevertheless, the recent pandemic, the accompanying economic problems, and the resulting supply problems have further increased the role of logistics and supply chains. Therefore, planning and scheduling procedures that can respond flexibly to changed circumstances have become more valuable both in logistics and projects. There are already several competing criteria of project and logistic process planning and scheduling that need to be reconciled. At the same time, the COVID-19 pandemic has shown that even more emphasis needs to be placed on taking potential risks into account. Flexibility and resilience are emphasized in all decision-making processes, including the scheduling of logistic processes, activities, and projects

    ๋ฌด์ธํ•ญ๊ณต๊ธฐ ์šด์˜์„ ์œ„ํ•œ ๋ฎ๊ฐœ ๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ๋Œ€๊ทœ๋ชจ ์ตœ์ ํ™” ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2021. 2. ๋ฌธ์ผ๊ฒฝ.There is increasing interest in the unmanned aerial vehicle (UAV) in various fields of the industry, starting from the surveillance to the logistics. After introducing the smart city, there are attempts to utilize UAVs in the public service sector by connecting individual components of the system with both information and physical goods. In this dissertation, the UAV operation problems in the public service sector is modeled in the set covering approach. There is a vast literature on the facility location and set covering problems. However, when operating UAVs in the system, the plan has to make the most of the flexibility of the UAV, but also has to consider its physical limitation. We noticed a gap between the related, existing approaches and the technologies required in the field. That is, the new characteristics of the UAV hinder the existing solution algorithms, or a brand-new approach is required. In this dissertation, two operation problems to construct an emergency wireless network in a disaster situation by UAV and one location-allocation problem of the UAV emergency medical service (EMS) facility are proposed. The reformulation to the extended formulation and the corresponding branch-and-price algorithm can overcome the limitations and improve the continuous or LP relaxation bounds, which are induced by the UAV operation. A brief explanation of the UAV operation on public service, the related literature, and the brief explanation of the large-scale optimization techniques are introduced in Chapter 1, along with the research motivations and contributions, and the outline of the dissertations. In Chapter 2, the UAV set covering problem is defined. Because the UAV can be located without predefined candidate positions, more efficient operation becomes feasible, but the continuous relaxation bound of the standard formulation is weakened. The large-scale optimization techniques, including the Dantzig-Wolfe decomposition and the branch-and-price algorithm, could improve the continuous relaxation bound and reduce the symmetries of the branching tree and solve the realistic-scaled problems within practical computation time. To avoid numerical instability, two approximation models are proposed, and their approximation ratios are analyzed. In Chapter 3, UAV variable radius set covering problem is proposed with an extra decision on the coverage radius. While implementing the branch-and-price algorithm to the problem, a solvable equivalent formulation of the pricing subproblem is proposed. A heuristic based on the USCP is designed, and the proposed algorithm outperformed the benchmark genetic algorithm proposed in the literature. In Chapter 4, the facility location-allocation problem for UAV EMS is defined. The quadratic variable coverage constraint is reformulated to the linear equivalent formulation, and the nonlinear problem induced by the robust optimization approach is linearized. While implementing the large-scale optimization techniques, the structure of the subproblem is analyzed, and two solution approaches for the pricing subproblem are proposed, along with a heuristic. The results of the research can be utilized when implementing in the real applications sharing the similar characteristics of UAVs, but also can be used in its abstract formulation.ํ˜„์žฌ, ์ง€์—ญ ๊ฐ์‹œ์—์„œ ๋ฌผ๋ฅ˜๊นŒ์ง€, ๋ฌด์ธํ•ญ๊ณต๊ธฐ์˜ ๋‹ค์–‘ํ•œ ์‚ฐ์—…์—์˜ ์‘์šฉ์ด ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์Šค๋งˆํŠธ ์‹œํ‹ฐ์˜ ๊ฐœ๋…์ด ๋Œ€๋‘๋œ ์ดํ›„, ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋ฅผ ๊ณต๊ณต ์„œ๋น„์Šค ์˜์—ญ์— ํ™œ์šฉํ•˜์—ฌ ๊ฐœ๋ณ„ ์‚ฌํšŒ ์š”์†Œ๋ฅผ ์—ฐ๊ฒฐ, ์ •๋ณด์™€ ๋ฌผ์ž๋ฅผ ๊ตํ™˜ํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„๊ฐ€ ์ด์–ด์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณต๊ณต ์„œ๋น„์Šค ์˜์—ญ์—์„œ์˜ ๋ฌด์ธํ•ญ๊ณต๊ธฐ ์šด์˜ ๋ฌธ์ œ๋ฅผ ์ง‘ํ•ฉ๋ฎ๊ฐœ๋ฌธ์ œ ๊ด€์ ์—์„œ ๋ชจํ˜•ํ™”ํ•˜์˜€๋‹ค. ์„ค๋น„์œ„์น˜๊ฒฐ์ • ๋ฐ ์ง‘ํ•ฉ๋ฎ๊ฐœ๋ฌธ์ œ ์˜์—ญ์— ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์–ด ์žˆ์œผ๋‚˜, ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋ฅผ ์šด์˜ํ•˜๋Š” ์‹œ์Šคํ…œ์˜ ๊ฒฝ์šฐ ๋ฌด์ธํ•ญ๊ณต๊ธฐ๊ฐ€ ๊ฐ–๋Š” ์ž์œ ๋„๋ฅผ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜๋ฉด์„œ๋„ ๋ฌด์ธํ•ญ๊ณต๊ธฐ์˜ ๋ฌผ๋ฆฌ์  ํ•œ๊ณ„๋ฅผ ๊ณ ๋ คํ•œ ์šด์˜ ๊ณ„ํš์„ ํ•„์š”๋กœ ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋ณธ ๋ฌธ์ œ์™€ ๊ด€๋ จ๋œ ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ํ˜„์žฅ์ด ํ•„์š”๋กœ ํ•˜๋Š” ๊ธฐ์ˆ ์˜ ๊ดด๋ฆฌ๋ฅผ ์ธ์‹ํ•˜์˜€๋‹ค. ์ด๋Š” ๋‹ค์‹œ ๋งํ•ด, ๋ฌด์ธํ•ญ๊ณต๊ธฐ๊ฐ€ ๊ฐ€์ง€๋Š” ์ƒˆ๋กœ์šด ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜๋ฉด ๊ธฐ์กด์˜ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ํ’€๊ธฐ ์–ด๋ ต๊ฑฐ๋‚˜, ํ˜น์€ ์ƒˆ๋กœ์šด ๊ด€์ ์—์„œ์˜ ๋ฌธ์ œ ์ ‘๊ทผ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์žฌ๋‚œ์ด ๋ฐœ์ƒํ•œ ์ง€์—ญ์— ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ธด๊ธ‰๋ฌด์„ ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๋‘๊ฐ€์ง€ ๋ฌธ์ œ์™€, ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์‘๊ธ‰์˜๋ฃŒ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š” ์‹œ์„ค์˜ ์œ„์น˜์„ค์ • ๋ฐ ํ• ๋‹น๋ฌธ์ œ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ํ™•์žฅ๋ฌธ์ œ๋กœ์˜ ์žฌ๊ณต์‹ํ™”์™€ ๋ถ„์ง€ํ‰๊ฐ€๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ, ๋ฌด์ธํ•ญ๊ณต๊ธฐ์˜ ํ™œ์šฉ์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋ฌธ์ œ ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ  ์™„ํ™”ํ•œ๊ณ„๋ฅผ ๊ฐœ์„ ํ•˜์˜€๋‹ค. ๊ณต๊ณต ์„œ๋น„์Šค ์˜์—ญ์—์„œ์˜ ๋ฌด์ธํ•ญ๊ณต๊ธฐ ์šด์˜, ๊ด€๋ จ๋œ ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์‚ฌ์šฉํ•˜๋Š” ๋Œ€๊ทœ๋ชจ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์— ๋Œ€ํ•œ ๊ฐœ๊ด„์ ์ธ ์„ค๋ช…, ์—ฐ๊ตฌ ๋™๊ธฐ ๋ฐ ๊ธฐ์—ฌ์™€ ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ์„ 1์žฅ์—์„œ ์†Œ๊ฐœํ•œ๋‹ค. 2์žฅ์—์„œ๋Š” ๋ฌด์ธํ•ญ๊ณต๊ธฐ ์ง‘ํ•ฉ๋ฎ๊ฐœ๋ฌธ์ œ๋ฅผ ์ •์˜ํ•œ๋‹ค. ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋Š” ๋ฏธ๋ฆฌ ์ •ํ•ด์ง„ ์œ„์น˜ ์—†์ด ์ž์œ ๋กญ๊ฒŒ ๋น„ํ–‰ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋” ํšจ์œจ์ ์ธ ์šด์˜์ด ๊ฐ€๋Šฅํ•˜๋‚˜, ์•ฝํ•œ ์™„ํ™”ํ•œ๊ณ„๋ฅผ ๊ฐ–๊ฒŒ ๋œ๋‹ค. Dantzig-Wolfe ๋ถ„ํ•ด์™€ ๋ถ„์ง€ํ‰๊ฐ€๋ฒ•์„ ํฌํ•จํ•œ ๋Œ€๊ทœ๋ชจ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์™„ํ™”ํ•œ๊ณ„๋ฅผ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ถ„์ง€๋‚˜๋ฌด์˜ ๋Œ€์นญ์„ฑ์„ ์ค„์—ฌ ์‹ค์ œ ๊ทœ๋ชจ์˜ ๋ฌธ์ œ๋ฅผ ์‹ค์šฉ์ ์ธ ์‹œ๊ฐ„ ์•ˆ์— ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ˆ˜์น˜์  ๋ถˆ์•ˆ์ •์„ฑ์„ ํ”ผํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๋‘ ๊ฐ€์ง€ ์„ ํ˜• ๊ทผ์‚ฌ ๋ชจํ˜•์ด ์ œ์•ˆ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋“ค์˜ ๊ทผ์‚ฌ ๋น„์œจ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. 3์žฅ์—์„œ๋Š” ๋ฌด์ธํ•ญ๊ณต๊ธฐ ์ง‘ํ•ฉ๋ฎ๊ฐœ๋ฌธ์ œ๋ฅผ ์ผ๋ฐ˜ํ™”ํ•˜์—ฌ ๋ฌด์ธํ•ญ๊ณต๊ธฐ ๊ฐ€๋ณ€๋ฐ˜๊ฒฝ ์ง‘ํ•ฉ๋ฎ๊ฐœ๋ฌธ์ œ๋ฅผ ์ •์˜ํ•œ๋‹ค. ๋ถ„์ง€ํ‰๊ฐ€๋ฒ•์„ ์ ์šฉํ•˜๋ฉด์„œ ํ•ด๊ฒฐ ๊ฐ€๋Šฅํ•œ ํ‰๊ฐ€ ๋ถ€๋ฌธ์ œ๋ฅผ ์ œ์•ˆํ•˜์˜€์œผ๋ฉฐ, ํœด๋ฆฌ์Šคํ‹ฑ์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ํ’€์ด ๋ฐฉ๋ฒ•๋“ค์ด ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ ๋ฒค์น˜๋งˆํฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋Šฅ๊ฐ€ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. 4์žฅ์—์„œ๋Š” ๋ฌด์ธํ•ญ๊ณต๊ธฐ ์‘๊ธ‰์˜๋ฃŒ์„œ๋น„์Šค๋ฅผ ์šด์˜ํ•˜๋Š” ์‹œ์„ค์˜ ์œ„์น˜์„ค์ • ๋ฐ ํ• ๋‹น๋ฌธ์ œ๋ฅผ ์ •์˜ํ•˜์˜€๋‹ค. 2์ฐจ ๊ฐ€๋ณ€๋ฐ˜๊ฒฝ ๋ฒ”์œ„์ œ์•ฝ์ด ์„ ํ˜•์˜ ๋™์น˜์ธ ์ˆ˜์‹์œผ๋กœ ์žฌ๊ณต์‹ํ™”๋˜์—ˆ์œผ๋ฉฐ, ๊ฐ•๊ฑด์ตœ์ ํ™” ๊ธฐ๋ฒ•์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋น„์„ ํ˜• ๋ฌธ์ œ๋ฅผ ์„ ํ˜•ํ™”ํ•˜์˜€๋‹ค. ๋Œ€๊ทœ๋ชจ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜๋ฉด์„œ, ํ‰๊ฐ€ ๋ถ€๋ฌธ์ œ์˜ ๊ตฌ์กฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ๋‘ ๊ฐ€์ง€ ํ’€์ด ๊ธฐ๋ฒ•๊ณผ ํœด๋ฆฌ์Šคํ‹ฑ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ๋ฌด์ธํ•ญ๊ณต๊ธฐ์™€ ๋น„์Šทํ•œ ํŠน์ง•์„ ๊ฐ€์ง€๋Š” ์‹ค์ œ ์‚ฌ๋ก€์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ถ”์ƒ์ ์ธ ๋ฌธ์ œ๋กœ์จ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ๊ทธ๋Œ€๋กœ ํ™œ์šฉ๋  ์ˆ˜๋„ ์žˆ๋‹ค.Abstract i Contents vii List of Tables ix List of Figures xi Chapter 1 Introduction 1 1.1 Unmanned aerial vehicle operation on public services 1 1.2 Facility location problems 3 1.3 Large-scale optimization techniques 4 1.4 Research motivations and contributions 6 1.5 Outline of the dissertation 12 Chapter 2 Unmanned aerial vehicle set covering problem considering fixed-radius coverage constraint 14 2.1 Introduction 14 2.2 Problem definition 20 2.2.1 Problem description 22 2.2.2 Mathematical formulation 23 2.2.3 Discrete approximation model 26 2.3 Branch-and-price approach for the USCP 28 2.3.1 An extended formulation of the USCP 29 2.3.2 Branching strategies 34 2.3.3 Pairwise-conflict constraint approximation model based on Jung's theorem 35 2.3.4 Comparison of the approximation models 40 2.3.5 Framework of the solution algorithm for the PCBP model 42 2.4 Computational experiments 44 2.4.1 Datasets used in the experiments 44 2.4.2 Algorithmic performances 46 2.5 Solutions and related problems of the USCP 61 2.6 Summary 64 Chapter 3 Unmanned aerial vehicle variable radius set covering problem 66 3.1 Introduction 66 3.2 Problem definition 70 3.2.1 Mathematical model 72 3.3 Branch-and-price approach to the UVCP 76 3.4 Minimum covering circle-based approach 79 3.4.1 Formulation of the pricing subproblem II 79 3.4.2 Equivalence of the subproblem 82 3.5 Fixed-radius heuristic 84 3.6 Computational experiments 86 3.6.1 Datasets used in the experiments 88 3.6.2 Solution algorithms 91 3.6.3 Algorithmic performances 94 3.7 Summary 107 Chapter 4 Facility location-allocation problem for unmanned aerial vehicle emergency medical service 109 4.1 Introduction 109 4.2 Related literature 114 4.3 Location-allocation model for UEMS facility 117 4.3.1 Problem definition 118 4.3.2 Mathematical formulation 120 4.3.3 Linearization of the quadratic variable coverage distance function 124 4.3.4 Linear reformulation of standard formulation 125 4.4 Solution algorithms 126 4.4.1 An extended formulation of the ULAP 126 4.4.2 Branching strategy 129 4.4.3 Robust disjunctively constrained integer knapsack problem 131 4.4.4 MILP reformulation approach 132 4.4.5 Decomposed DP approach 133 4.4.6 Restricted master heuristic 136 4.5 Computational experiments 137 4.5.1 Datasets used in the experiments 137 4.5.2 Algorithmic performances 140 4.5.3 Analysis of the branching strategy and the solution approach of the pricing subproblem 150 4.6 Summary 157 Chapter 5 Conclusions and future research 160 5.1 Summary 160 5.2 Future research 163 Appendices 165 A Comparison of the computation times and objective value of the proposed algorithms 166 Bibliography 171 ๊ตญ๋ฌธ์ดˆ๋ก 188 ๊ฐ์‚ฌ์˜ ๊ธ€ 190Docto

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial
    • โ€ฆ
    corecore