29,241 research outputs found

    Improving the Convergence of Vector Fitting for Equivalent Circuit Extraction From Noisy Frequency Responses

    Get PDF
    The vector fitting (VF) algorithm has become a common tool in electromagnetic compatibility and signal integrity studies. This algorithm allows the derivation of a rational approximation to the transfer matrix of a given linear structure starting from measured or simulated frequency responses. This paper addresses the convergence properties of a VF when the frequency samples are affected by noise.We show that small amounts of noise can seriously impair or destroy convergence. This is due to the presence of spurious poles that appear during the iterations. To overcome this problem we suggest a simple modification of the basic VF algorithm, based on the identification and removal of the spurious poles. Also, an incremental pole addition and relocation process is proposed in order to provide automatic order estimation even in the presence of significant noise.We denote the resulting algorithm as vector fitting with adding and skimming (VF-AS). A thorough validation of the VF-AS algorithm is presented using a Monte Carlo analysis on synthetic noisy frequency responses. The results show excellent convergence and significant improvements with respect to the basic VF iteration scheme. Finally, we apply the new VF-AS algorithm to measured scattering responses of interconnect structures and networks typical of high-speed digital systems

    Column Generation for the Container Relocation Problem

    Get PDF
    Container terminals offer transfer facilities to move containers from vessels to trucks, trains and barges and vice versa. Within the terminal the container yard serves as a temporary buffer where incoming containers are piled up in stacks. Only the topmost container of each stack can be accessed. If another container has to be retrieved, containers stored above it must be relocated first. Containers need to be transported to a ship or to trucks in a predefined sequence as fast as possible. Generally, this sequence does not match the stacking order within the yard. Therefore, a sequence of retrieval and relocation movements has to be determined that retrieves containers from the bay in the prescribed order with a minimum number of relocations. This problem is known as the container relocation problem. We apply an exact and a heuristic column generation approach to this problem. First results are very promising since both approaches provide very tight lower bounds on the minimum number of relocations
    corecore