166 research outputs found

    Recourse policies in the vehicle routing problem with stochastic demands

    Full text link
    Dans le domaine de la logistique, de nombreux problĂšmes pratiques peuvent ĂȘtre formulĂ©s comme le problĂšme de tournĂ©es de vĂ©hicules (PTV). Dans son image la plus large, le PTV vise Ă  concevoir un ensemble d’itinĂ©raires de collecte ou de livraison des marchandises Ă  travers un ensemble de clients avec des coĂ»ts minimaux. Dans le PTV dĂ©terministe, tous les paramĂštres du problĂšme sont supposĂ©s connus au prĂ©alable. Dans de nombreuses variantes de la vie rĂ©elle du PTV, cependant, ils impliquent diverses sources d’alĂ©atoire. Le PTV traite du caractĂšre alĂ©atoire inhĂ©rent aux demandes, prĂ©sence des clients, temps de parcours ou temps de service. Les PTV, dans lesquels un ou plusieurs paramĂštres sont stochastiques, sont appelĂ©s des problĂšmes stochastiques de tournĂ©es de vĂ©hicules (PSTV). Dans cette dissertation, nous Ă©tudions spĂ©cifiquement le problĂšme de tournĂ©es de vĂ©hicules avec les demandes stochastiques (PTVDS). Dans cette variante de PSTV, les demandes des clients ne sont connues qu’en arrivant Ă  l’emplacement du client et sont dĂ©finies par des distributions de probabilitĂ©. Dans ce contexte, le vĂ©hicule qui exĂ©cute une route planifiĂ©e peut ne pas rĂ©pondre Ă  un client, lorsque la demande observĂ©e dĂ©passe la capacitĂ© rĂ©siduelle du vĂ©hicule. Ces Ă©vĂ©nements sont appelĂ©s les Ă©checs de l’itinĂ©raire; dans ce cas, l’itinĂ©raire planifiĂ© devient non-rĂ©alisable. Il existe deux approches face aux Ă©checs de l’itinĂ©raire. Au client oĂč l’échec s’est produit, on peut rĂ©cupĂ©rer la realisabilite en exĂ©cutant un aller-retour vers le dĂ©pĂŽt, pour remplir la capacitĂ© du vĂ©hicule et complĂ©ter le service. En prĂ©vision des Ă©checs d’itinĂ©raire, on peut exĂ©cuter des retours prĂ©ventifs lorsque la capacitĂ© rĂ©siduelle est infĂ©rieure Ă  une valeur seuil. Toutes les dĂ©cisions supplĂ©mentaires, qui sont sous la forme de retours au dĂ©pĂŽt dans le contexte PTVDS, sont appelĂ©es des actions de recours. Pour modĂ©liser le PTVDS, une politique de recours, rĂ©gissant l’exĂ©cution des actions de recours, doit ĂȘtre conçue. L’objectif de cette dissertation est d’élaborer des politiques de recours rentables, dans lesquelles les conventions opĂ©rationnelles fixes peuvent rĂ©gir l’exĂ©cution des actions de recours. Nous fournissons un cadre gĂ©nĂ©ral pour classer les conventions opĂ©rationnelles fixes pour ĂȘtre utilisĂ©es dans le cadre PTVDS. Dans cette classification, les conventions opĂ©rationnelles fixes peuvent ĂȘtre regroupĂ©es dans (i) les politiques basĂ©es sur le volume, (ii) les politiques basĂ©es sur le risque et (iii) les politiques basĂ©es sur le distance. Les politiques hybrides, dans lesquelles plusieurs rĂšgles fixes sont incorporĂ©es, peuvent ĂȘtre envisagĂ©es. Dans la premiĂšre partie de cette thĂšse, nous proposons une politique fixe basĂ©e sur les rĂšgles, par laquelle l’exĂ©cution des retours prĂ©ventifs est rĂ©gie par les seuils prĂ©dĂ©finis. Nous proposons notamment trois politiques basĂ©es sur le volume qui tiennent compte de la capacitĂ© du vĂ©hicule, de la demande attendue du prochain client et de la demande attendue des clients non visitĂ©s. La mĂ©thode “Integer L-Shaped" est rĂ©amĂ©nagĂ©e pour rĂ©soudre le PTVDS selon la politique basĂ©e sur les rĂšgles. Dans la deuxiĂšme partie, nous proposons une politique de recours hybride, qui combine le risque d’échec et de distance Ă  parcourir en une seule rĂšgle de recours, rĂ©gissant l’exĂ©cution des recours. Nous proposons d’abord une mesure de risque pour contrĂŽler le risque d’échec au prochain client. Lorsque le risque d’échec n’est ni trop Ă©levĂ© ni trop bas, nous utilisons une mesure de distance, ce qui compare le coĂ»t de retour prĂ©ventif avec les coĂ»ts d’échecs futurs. Dans la derniĂšre partie de cette thĂšse, nous dĂ©veloppons une mĂ©thodologie de solution exacte pour rĂ©soudre le VRPSD dans le cadre d’une politique de restockage optimale. La politique de restockage optimale rĂ©sulte d’un ensemble de seuils spĂ©cifiques au client, de sorte que le coĂ»t de recours prĂ©vu soit rĂ©duit au minimum.In the field of logistics, many practical problems can be formulated as the vehicle routing problem (VRP). In its broadest picture, the VRP aims at designing a set of vehicle routes to pickup or delivery goods through a set of customers with the minimum costs. In the deterministic VRP, all problem parameters are assumed known beforehand. The VRPs in real-life applications, however, involve various sources of uncertainty. Uncertainty is appeared in several parameters of the VRPs like demands, customer, service or traveling times. The VRPs in which one or more parameters appear to be uncertain are called stochastic VRPs (SVRPs). In this dissertation, we examine vehicle routing problem with stochastic demands (VRPSD). In this variant of SVRPs, the customer demands are only known upon arriving at the customer location and are defined through probability distributions. In this setting, the vehicle executing a planned route may fail to service a customer, whenever the observed demand exceeds the residual capacity of the vehicle. Such occurrences are called route failures; in this case the planned route becomes infeasible. There are two approaches when facing route failures. At the customer where the failure occurred, one can recover routing feasibility by executing back-and-forth trips to the depot to replenish the vehicle capacity and complete the service. In anticipation of route failures, one can perform preventive returns whenever the residual capacity falls below a threshold value. All the extra decisions, which are in the form of return trips to the depot in the VRPSD context, preserving routing feasibility are called recourse actions. To model the VRPSD, a recourse policy, governing the execution of such recourse actions, must be designed. The goal of this dissertation is to develop cost-effective recourse policies, in which the fixed operational conventions can govern the execution of recourse actions. In the first part of this dissertation, we propose a fixed rule-based policy, by which the execution of preventive returns is governed through the preset thresholds. We particularly introduce three volume based policies which consider the vehicle capacity, expected demand of the next customer and the expected demand of the remaining unvisited customers. Then, the integer L-shaped algorithm is redeveloped to solve the VRPSD under the rule-based policy. The contribution with regard to this study has been submitted to the Journal of Transportation Science. In the second part, we propose a hybrid recourse policy, which combines the risk of failure and distances-to-travel into a single recourse rule, governing the execution of recourse actions. We employ a risk measure to control the risk of failure at the next customer. When the risk of failure is neither too high nor too low, we apply a distance measure, which compares the preventive return cost with future failures cost. The contribution with regard to this study has been submitted to the EURO Journal on Transportation and Logistics. In the last part of this dissertation, we develop an exact solution methodology to solve the VRPSD under an optimal restocking policy. The optimal restocking policy derives a set of customer-specific thresholds such that the expected recourse cost is minimized. The contribution with regard to this study will be submitted to the European Journal of Operational Research

    The stochastic vehicle routing problem : a literature review, part II : solution methods

    Get PDF
    Building on the work of Gendreau et al. (Oper Res 44(3):469–477, 1996), and complementing the first part of this survey, we review the solution methods used for the past 20 years in the scientific literature on stochastic vehicle routing problems (SVRP). We describe the methods and indicate how they are used when dealing with stochastic vehicle routing problems. Keywords: vehicle routing (VRP), stochastic programmingm, SVRPpublishedVersio

    A Vehicle Routing Problem with Multiple Service Agreements

    Get PDF
    We consider a logistics service provider which arranges transportation services to customers with different service agreements. The most prominent feature of this service agreement is the time period in which these customers send their orders and want to retrieve delivery information. After customers place their orders, they require information about the driver and an early indication of the arrival times. At the moment, this information needs to be provided. The order information of other customers with a different service agreement that needs to be serviced in the same period might still be unknown. Ultimately all customers have to be planned, constrained by the information provided to the customers in the earlier stage. In this paper, we investigate how the logistic service provider plans its routes and communicates the driver and arrival time information in the phase where not all customers are known (stage 1). Once all customer orders are known (stage 2), the final routes can be determined, which adhere to the already communicated driver and arrival time information from stage 1, minimizing total routing cost. For this problem, an exact algorithm is presented. This problem is solved using a novel tractable branch-and-bound method and re-optimization in stage 2. Detailed results are presented, showing the improvements of using re-optimization. We show that integrating the planning of the customers with the different service agreements leads to significant cost savings compared to treating the customers separately (as is currently done by most logistics service providers).</p

    The stochastic vehicle routing problem : a literature review, part I : models

    Get PDF
    Building on the work of Gendreau et al. (Eur J Oper Res 88(1):3–12; 1996), we review the past 20 years of scientific literature on stochastic vehicle routing problems. The numerous variants of the problem that have been studied in the literature are described and categorized. Keywords: vehicle routing (VRP), stochastic programming, SVRPpublishedVersio

    Tabu search heuristic for inventory routing problem with stochastic demand and time windows

    Get PDF
    This study proposes the hybridization of tabu search (TS) and variable neighbourhood descent (VND) for solving the Inventory Routing Problems with Stochastic Demand and Time Windows (IRPSDTW). Vendor Managed Inventory (VMI) is among the most used approaches for managing supply chains comprising multiple stakeholders, and implementing VMI require addressing the Inventory Routing Problem (IRP). Considering practical constraints related to demand uncertainty and time constraint, the proposed model combines multi-item replenishment schedules with unknown demand to arrange delivery paths, where the actual demand amount is only known upon arrival at a customer location with a time limit. The proposed method starts from the initial solution that considers the time windows and uses the TS method to solve the problem. As an extension, the VND is conducted to jump the solution from its local optimal. The results show that the proposed method can solve the IRPSDTW, especially for uniformly distributed customer locations

    A hybrid evolutionary algorithm for vehicle routing problem with stochastic demands

    Get PDF
    In this work we propose a hybrid dynamic programming evolutionary algorithm to solve the vehicle routing problem with stochastic demands, it is a well known NP-hard problem where uncertainty enhances the computational efforts required to obtain a feasible and near-optimal solution. We develop an evolutionary technique where a rollout dynamic programming algorithm is applied as local search method to improve the quality of solutions. Motivated by computational considerations, the rollout algorithm can be applied partially, so, this finds competitive solutions in large instances for which the global rollout dynamic programming strategy is time unfeasible.Resumen. En este trabajo se propone un algoritmo evolutivo hibrido que combina un m ́etodo de programaciĂłn dinĂĄmica estocĂĄstica para resolver el problema de enrutamiento de vehĂ­culos con demandas estocĂĄsticas, este es un problema demostrado como NP-difĂ­cil donde la presencia de incertidumbre incrementa los requerimientos computacionales necesarios para obtener soluciones factibles y cercanas a la Ăłptima. AsĂ­, para el algoritmo evolutivo desarrollado se aplico un algoritmo rollout de programaciĂłn dinĂĄmica estocĂĄstica como operador de bĂșsqueda local para mejorar la calidad de las soluciones. Motivado por requerimientos computacionales, el algoritmo de rollout puede ser aplicado parcialmente, con el objetivo de encontrar soluciones competitivas en instancias lo suficientemente grandes para las cuales la estrategĂ­a global no es aplicable por consumir una cantidad de tiempo no tolerable.MaestrĂ­

    Routing in stochastic networks

    Get PDF

    Essays on stochastic and multi-objective capacitated vehicle routing problems

    Get PDF
    • 

    corecore