1,269 research outputs found

    An evolutionary algorithm for online, resource constrained, multi-vehicle sensing mission planning

    Full text link
    Mobile robotic platforms are an indispensable tool for various scientific and industrial applications. Robots are used to undertake missions whose execution is constrained by various factors, such as the allocated time or their remaining energy. Existing solutions for resource constrained multi-robot sensing mission planning provide optimal plans at a prohibitive computational complexity for online application [1],[2],[3]. A heuristic approach exists for an online, resource constrained sensing mission planning for a single vehicle [4]. This work proposes a Genetic Algorithm (GA) based heuristic for the Correlated Team Orienteering Problem (CTOP) that is used for planning sensing and monitoring missions for robotic teams that operate under resource constraints. The heuristic is compared against optimal Mixed Integer Quadratic Programming (MIQP) solutions. Results show that the quality of the heuristic solution is at the worst case equal to the 5% optimal solution. The heuristic solution proves to be at least 300 times more time efficient in the worst tested case. The GA heuristic execution required in the worst case less than a second making it suitable for online execution.Comment: 8 pages, 5 figures, accepted for publication in Robotics and Automation Letters (RA-L

    The Vehicle Routing Problem with Service Level Constraints

    Full text link
    We consider a vehicle routing problem which seeks to minimize cost subject to service level constraints on several groups of deliveries. This problem captures some essential challenges faced by a logistics provider which operates transportation services for a limited number of partners and should respect contractual obligations on service levels. The problem also generalizes several important classes of vehicle routing problems with profits. To solve it, we propose a compact mathematical formulation, a branch-and-price algorithm, and a hybrid genetic algorithm with population management, which relies on problem-tailored solution representation, crossover and local search operators, as well as an adaptive penalization mechanism establishing a good balance between service levels and costs. Our computational experiments show that the proposed heuristic returns very high-quality solutions for this difficult problem, matches all optimal solutions found for small and medium-scale benchmark instances, and improves upon existing algorithms for two important special cases: the vehicle routing problem with private fleet and common carrier, and the capacitated profitable tour problem. The branch-and-price algorithm also produces new optimal solutions for all three problems

    Determining reliable solutions for the team orienteering problem with probabilistic delays

    Get PDF
    In the team orienteering problem, a fixed fleet of vehicles departs from an origin depot towards a destination, and each vehicle has to visit nodes along its route in order to collect rewards. Typically, the maximum distance that each vehicle can cover is limited. Alternatively, there is a threshold for the maximum time a vehicle can employ before reaching its destination. Due to this driving range constraint, not all potential nodes offering rewards can be visited. Hence, the typical goal is to maximize the total reward collected without exceeding the vehicle’s capacity. The TOP can be used to model operations related to fleets of unmanned aerial vehicles, road electric vehicles with limited driving range, or ride-sharing operations in which the vehicle has to reach its destination on or before a certain deadline. However, in some realistic scenarios, travel times are better modeled as random variables, which introduce additional challenges into the problem. This paper analyzes a stochastic version of the team orienteering problem in which random delays are considered. Being a stochastic environment, we are interested in generating solutions with a high expected reward that, at the same time, are highly reliable (i.e., offer a high probability of not suffering any route delay larger than a user-defined threshold). In order to tackle this stochastic optimization problem, which contains a probabilistic constraint on the random delays, we propose an extended simheuristic algorithm that also employs concepts from reliability analysis.This work has been partially funded by the Spanish Ministry of Science (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033), the Barcelona City Council and Fundació “la Caixa” under the framework of the Barcelona Science Plan 2020–2023 (grant 21S09355-001), and the Generalitat Valenciana (PROMETEO/2021/065).Peer ReviewedPostprint (published version

    Distributed Services with Foreseen and Unforeseen Tasks: The Mobile Re-allocation Problem

    Get PDF
    In this paper we deal with a common problem found in the operations of security and preventive/corrective maintenance services: that of routing a number of mobile resources to serve foreseen and unforeseen tasks during a shift. We define the (Mobile Re-Allocation Problem) MRAP as the problem of devising a routing strategy to maximize the expected weighted number of tasks served on time. For obtaining a solution to the MRAP, we propose to solve successively a multi-objective optimization problem called the stochastic Team Orienteering Problem with Multiple Time Windows (s-TOP-MTW) so as to consider information about known tasks and the arrival process of new unforeseen tasks. Solving successively the s-TOP-MTW we find that considering information about the arrival process of new unforeseen tasks may aid in maximizing the expected proportion of tasks accomplished on time.location;reliability;routing;distributed services
    • 

    corecore