13,307 research outputs found

    On the robustness of bucket brigade quantum RAM

    Get PDF
    We study the robustness of the bucket brigade quantum random access memory model introduced by Giovannetti, Lloyd, and Maccone [Phys. Rev. Lett. 100, 160501 (2008)]. Due to a result of Regev and Schiff [ICALP '08 pp. 773], we show that for a class of error models the error rate per gate in the bucket brigade quantum memory has to be of order o(2−n/2)o(2^{-n/2}) (where N=2nN=2^n is the size of the memory) whenever the memory is used as an oracle for the quantum searching problem. We conjecture that this is the case for any realistic error model that will be encountered in practice, and that for algorithms with super-polynomially many oracle queries the error rate must be super-polynomially small, which further motivates the need for quantum error correction. By contrast, for algorithms such as matrix inversion [Phys. Rev. Lett. 103, 150502 (2009)] or quantum machine learning [Phys. Rev. Lett. 113, 130503 (2014)] that only require a polynomial number of queries, the error rate only needs to be polynomially small and quantum error correction may not be required. We introduce a circuit model for the quantum bucket brigade architecture and argue that quantum error correction for the circuit causes the quantum bucket brigade architecture to lose its primary advantage of a small number of "active" gates, since all components have to be actively error corrected.Comment: Replaced with the published version. 13 pages, 9 figure

    Self-organized Emergence of Navigability on Small-World Networks

    Full text link
    This paper mainly investigates why small-world networks are navigable and how to navigate small-world networks. We find that the navigability can naturally emerge from self-organization in the absence of prior knowledge about underlying reference frames of networks. Through a process of information exchange and accumulation on networks, a hidden metric space for navigation on networks is constructed. Navigation based on distances between vertices in the hidden metric space can efficiently deliver messages on small-world networks, in which long range connections play an important role. Numerical simulations further suggest that high cluster coefficient and low diameter are both necessary for navigability. These interesting results provide profound insights into scalable routing on the Internet due to its distributed and localized requirements.Comment: 3 figure

    Precoding-Based Network Alignment For Three Unicast Sessions

    Full text link
    We consider the problem of network coding across three unicast sessions over a directed acyclic graph, where each sender and the receiver is connected to the network via a single edge of unit capacity. We consider a network model in which the middle of the network only performs random linear network coding, and restrict our approaches to precoding-based linear schemes, where the senders use precoding matrices to encode source symbols. We adapt a precoding-based interference alignment technique, originally developed for the wireless interference channel, to construct a precoding-based linear scheme, which we refer to as as a {\em precoding-based network alignment scheme (PBNA)}. A primary difference between this setting and the wireless interference channel is that the network topology can introduce dependencies between elements of the transfer matrix, which we refer to as coupling relations, and can potentially affect the achievable rate of PBNA. We identify all possible such coupling relations, and interpret these coupling relations in terms of network topology and present polynomial-time algorithms to check the presence of these coupling relations. Finally, we show that, depending on the coupling relations present in the network, the optimal symmetric rate achieved by precoding-based linear scheme can take only three possible values, all of which can be achieved by PBNA.Comment: arXiv admin note: text overlap with arXiv:1202.340

    Mapping constrained optimization problems to quantum annealing with application to fault diagnosis

    Get PDF
    Current quantum annealing (QA) hardware suffers from practical limitations such as finite temperature, sparse connectivity, small qubit numbers, and control error. We propose new algorithms for mapping boolean constraint satisfaction problems (CSPs) onto QA hardware mitigating these limitations. In particular we develop a new embedding algorithm for mapping a CSP onto a hardware Ising model with a fixed sparse set of interactions, and propose two new decomposition algorithms for solving problems too large to map directly into hardware. The mapping technique is locally-structured, as hardware compatible Ising models are generated for each problem constraint, and variables appearing in different constraints are chained together using ferromagnetic couplings. In contrast, global embedding techniques generate a hardware independent Ising model for all the constraints, and then use a minor-embedding algorithm to generate a hardware compatible Ising model. We give an example of a class of CSPs for which the scaling performance of D-Wave's QA hardware using the local mapping technique is significantly better than global embedding. We validate the approach by applying D-Wave's hardware to circuit-based fault-diagnosis. For circuits that embed directly, we find that the hardware is typically able to find all solutions from a min-fault diagnosis set of size N using 1000N samples, using an annealing rate that is 25 times faster than a leading SAT-based sampling method. Further, we apply decomposition algorithms to find min-cardinality faults for circuits that are up to 5 times larger than can be solved directly on current hardware.Comment: 22 pages, 4 figure

    Crosstalk-free Conjugate Networks for Optical Multicast Switching

    Full text link
    High-speed photonic switching networks can switch optical signals at the rate of several terabits per second. However, they suffer from an intrinsic crosstalk problem when two optical signals cross at the same switch element. To avoid crosstalk, active connections must be node-disjoint in the switching network. In this paper, we propose a sequence of decomposition and merge operations, called conjugate transformation, performed on each switch element to tackle this problem. The network resulting from this transformation is called conjugate network. By using the numbering-schemes of networks, we prove that if the route assignments in the original network are link-disjoint, their corresponding ones in the conjugate network would be node-disjoint. Thus, traditional nonblocking switching networks can be transformed into crosstalk-free optical switches in a routine manner. Furthermore, we show that crosstalk-free multicast switches can also be obtained from existing nonblocking multicast switches via the same conjugate transformation.Comment: 10 page

    Simulating the All-Order Strong Coupling Expansion III: O(N) sigma/loop models

    Get PDF
    We reformulate the O(N) sigma model as a loop model whose configurations are the all-order strong coupling graphs of the original model. The loop configurations are represented by a pointer list in the computer and a Monte Carlo update scheme is proposed. Sample simulations are reported and the method turns out to be similarly efficient as the reflection cluster method, but it has greater potential for systematic generalization to other lattice field theories. A variant action suggested by the method is also simulated and leads to a rather extreme demonstration of the concept of universality of the scaling or continuum limit.Comment: 27 pages, 6 figures, 5 tables. The combinatoric derivation of the (unchanged) algorithm is corrected. Independently, all data in sect.5 are revised due to a software error, with unchanged conclusions on universality
    • …
    corecore