373 research outputs found

    Pemilihan kerjaya di kalangan pelajar aliran perdagangan sekolah menengah teknik : satu kajian kes

    Get PDF
    This research is a survey to determine the career chosen of form four student in commerce streams. The important aspect of the career chosen has been divided into three, first is information about career, type of career and factor that most influence students in choosing a career. The study was conducted at Sekolah Menengah Teknik Kajang, Selangor Darul Ehsan. Thirty six form four students was chosen by using non-random sampling purpose method as respondent. All information was gather by using questionnaire. Data collected has been analyzed in form of frequency, percentage and mean. Results are performed in table and graph. The finding show that information about career have been improved in students career chosen and mass media is the main factor influencing students in choosing their career

    Personalised modelling with spiking neural networks integrating temporal and static information.

    Full text link
    This paper proposes a new personalised prognostic/diagnostic system that supports classification, prediction and pattern recognition when both static and dynamic/spatiotemporal features are presented in a dataset. The system is based on a proposed clustering method (named d2WKNN) for optimal selection of neighbouring samples to an individual with respect to the integration of both static (vector-based) and temporal individual data. The most relevant samples to an individual are selected to train a Personalised Spiking Neural Network (PSNN) that learns from sets of streaming data to capture the space and time association patterns. The generated time-dependant patterns resulted in a higher accuracy of classification/prediction (80% to 93%) when compared with global modelling and conventional methods. In addition, the PSNN models can support interpretability by creating personalised profiling of an individual. This contributes to a better understanding of the interactions between features. Therefore, an end-user can comprehend what interactions in the model have led to a certain decision (outcome). The proposed PSNN model is an analytical tool, applicable to several real-life health applications, where different data domains describe a person's health condition. The system was applied to two case studies: (1) classification of spatiotemporal neuroimaging data for the investigation of individual response to treatment and (2) prediction of risk of stroke with respect to temporal environmental data. For both datasets, besides the temporal data, static health data were also available. The hyper-parameters of the proposed system, including the PSNN models and the d2WKNN clustering parameters, are optimised for each individual

    Information methods for predicting risk and outcome of stroke

    Get PDF
    Stroke is a major cause of disability and mortality in most economically developed countries. It is the second leading cause of death worldwide (after cancer and heart disease) [55.1, 2] and a major cause of disability in adults in developed countries [55.3]. Personalized modeling is an emerging effective computational approach, which has been applied to various disciplines, such as in personalized drug design, ecology, business, and crime prevention; it has recently become more prominent in biomedical applications. Biomedical data on stroke risk factors and prognostic data are available in a large volume, but the data are complex and often difficult to apply to a specific person. Individualizing stroke risk prediction and prognosis will allow patients to focus on risk factors specific to them, thereby reducing their stroke risk and managing stroke outcomes more effectively. This chapter reviews various methods–conventional statistical methods and computational intelligent modeling methods for predicting risk and outcome of stroke

    Studying Transfer of Learning using a Brain-Inspired Spiking Neural Network in the Context of Learning a New Programming Language

    Get PDF
    Transfer of learning (TL) has been an important research area for scholars, educators, and cognitive psychologists for over a century. However, it is not yet understood why applying existing knowledge and skills in a new context does not always follow expectations, and how to facilitate the activation of prior knowledge to enable TL. This research uses cognitive load theory (CLT) and a neuroscience approach in order to investigate the relationship between cognitive load and prior knowledge in the context of learning a new programming language. According to CLT, reducing cognitive load improves memory performance and may lead to better retention and transfer performance. A number of different frequency-based features of EEG data may be used for measuring cognitive load. This study focuses on analysing spatio-temporal brain data (STBD) gathered experimentally using an EEG device. An SNN based computational architecture, NeuCube, was used to create a brain-like computation model and visualise the neural connectivity and spike activity patterns formed when an individual is learning a new programming language. The results indicate that cognitive load and the associated Theta and Alpha band frequencies can be used as a measure of the TL process and, more specifically, that the neuronal connectivity and spike activity patterns visualised in the NeuCube model can be interpreted with reference to the brain activities associated with the TL process

    Machine learning methods for the study of cybersickness: a systematic review

    Get PDF
    This systematic review offers a world-first critical analysis of machine learning methods and systems, along with future directions for the study of cybersickness induced by virtual reality (VR). VR is becoming increasingly popular and is an important part of current advances in human training, therapies, entertainment, and access to the metaverse. Usage of this technology is limited by cybersickness, a common debilitating condition experienced upon VR immersion. Cybersickness is accompanied by a mix of symptoms including nausea, dizziness, fatigue and oculomotor disturbances. Machine learning can be used to identify cybersickness and is a step towards overcoming these physiological limitations. Practical implementation of this is possible with optimised data collection from wearable devices and appropriate algorithms that incorporate advanced machine learning approaches. The present systematic review focuses on 26 selected studies. These concern machine learning of biometric and neuro-physiological signals obtained from wearable devices for the automatic identification of cybersickness. The methods, data processing and machine learning architecture, as well as suggestions for future exploration on detection and prediction of cybersickness are explored. A wide range of immersion environments, participant activity, features and machine learning architectures were identified. Although models for cybersickness detection have been developed, literature still lacks a model for the prediction of first-instance events. Future research is pointed towards goal-oriented data selection and labelling, as well as the use of brain-inspired spiking neural network models to achieve better accuracy and understanding of complex spatio-temporal brain processes related to cybersickness
    corecore