17,719 research outputs found

    Index Mutual Fund Replication

    Get PDF
    This paper discusses the application of an index tracking technique to mutual fund replication problems. By using a tracking error (TE) minimization method and two tactical rebalancing strategies (i.e. the calendar based strategy and the tolerance triggered strategy), a multi-period fund tracking model is developed that replicates S&P 500 mutual fund returns. The impact of excess returns and loss aversion on overall tracking performance is also discussed in two extended cases of the original TE optimization respectively. An evolutionary method, namely Differential Evolution, is used for optimizing the asset weights. According to the experiment results, it is found that the proposed model replicates the first two moments of the fund returns by using only five equities. The TE optimization strategy under loss aversion with tolerance triggered rebalancing dominates other combinations studied with regard to tracking ability and cost efficiency.Passive Portfolio Management, Fund Tracking, MultiPeriod Optimization, Differential Evolution

    Soft computing techniques applied to finance

    Get PDF
    Soft computing is progressively gaining presence in the financial world. The number of real and potential applications is very large and, accordingly, so is the presence of applied research papers in the literature. The aim of this paper is both to present relevant application areas, and to serve as an introduction to the subject. This paper provides arguments that justify the growing interest in these techniques among the financial community and introduces domains of application such as stock and currency market prediction, trading, portfolio management, credit scoring or financial distress prediction areas.Publicad

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems

    Portfolio selection problems in practice: a comparison between linear and quadratic optimization models

    Full text link
    Several portfolio selection models take into account practical limitations on the number of assets to include and on their weights in the portfolio. We present here a study of the Limited Asset Markowitz (LAM), of the Limited Asset Mean Absolute Deviation (LAMAD) and of the Limited Asset Conditional Value-at-Risk (LACVaR) models, where the assets are limited with the introduction of quantity and cardinality constraints. We propose a completely new approach for solving the LAM model, based on reformulation as a Standard Quadratic Program and on some recent theoretical results. With this approach we obtain optimal solutions both for some well-known financial data sets used by several other authors, and for some unsolved large size portfolio problems. We also test our method on five new data sets involving real-world capital market indices from major stock markets. Our computational experience shows that, rather unexpectedly, it is easier to solve the quadratic LAM model with our algorithm, than to solve the linear LACVaR and LAMAD models with CPLEX, one of the best commercial codes for mixed integer linear programming (MILP) problems. Finally, on the new data sets we have also compared, using out-of-sample analysis, the performance of the portfolios obtained by the Limited Asset models with the performance provided by the unconstrained models and with that of the official capital market indices

    Adaptive Evolutionary Clustering

    Full text link
    In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term trends while being robust to short-term variations. Several evolutionary clustering algorithms have recently been proposed, often by adding a temporal smoothness penalty to the cost function of a static clustering method. In this paper, we introduce a different approach to evolutionary clustering by accurately tracking the time-varying proximities between objects followed by static clustering. We present an evolutionary clustering framework that adaptively estimates the optimal smoothing parameter using shrinkage estimation, a statistical approach that improves a naive estimate using additional information. The proposed framework can be used to extend a variety of static clustering algorithms, including hierarchical, k-means, and spectral clustering, into evolutionary clustering algorithms. Experiments on synthetic and real data sets indicate that the proposed framework outperforms static clustering and existing evolutionary clustering algorithms in many scenarios.Comment: To appear in Data Mining and Knowledge Discovery, MATLAB toolbox available at http://tbayes.eecs.umich.edu/xukevin/affec

    A multiobjective model for passive portfolio management: an application on the S&P 100 index

    Get PDF
    This is an author's accepted manuscript of an article published in: “Journal of Business Economics and Management"; Volume 14, Issue 4, 2013; copyright Taylor & Francis; available online at: http://dx.doi.org/10.3846/16111699.2012.668859Index tracking seeks to minimize the unsystematic risk component by imitating the movements of a reference index. Partial index tracking only considers a subset of the stocks in the index, enabling a substantial cost reduction in comparison with full tracking. Nevertheless, when heterogeneous investment profiles are to be satisfied, traditional index tracking techniques may need different stocks to build the different portfolios. The aim of this paper is to propose a methodology that enables a fund s manager to satisfy different clients investment profiles but using in all cases the same subset of stocks, and considering not only one particular criterion but a compromise between several criteria. For this purpose we use a mathematical programming model that considers the tracking error variance, the excess return and the variance of the portfolio plus the curvature of the tracking frontier. The curvature is not defined for a particular portfolio, but for all the portfolios in the tracking frontier. This way funds managers can offer their clients a wide range of risk-return combinations just picking the appropriate portfolio in the frontier, all of these portfolios sharing the same shares but with different weights. An example of our proposal is applied on the S&P 100.García García, F.; Guijarro Martínez, F.; Moya Clemente, I. (2013). A multiobjective model for passive portfolio management: an application on the S&P 100 index. Journal of Business Economics and Management. 14(4):758-775. doi:10.3846/16111699.2012.668859S758775144Aktan, B., Korsakienė, R., & Smaliukienė, R. (2010). TIME‐VARYING VOLATILITY MODELLING OF BALTIC STOCK MARKETS. Journal of Business Economics and Management, 11(3), 511-532. doi:10.3846/jbem.2010.25Ballestero, E., & Romero, C. (1991). A theorem connecting utility function optimization and compromise programming. Operations Research Letters, 10(7), 421-427. doi:10.1016/0167-6377(91)90045-qBeasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational Research Society, 41(11), 1069-1072. doi:10.1057/jors.1990.166Beasley, J. E., Meade, N., & Chang, T.-J. (2003). An evolutionary heuristic for the index tracking problem. European Journal of Operational Research, 148(3), 621-643. doi:10.1016/s0377-2217(02)00425-3Canakgoz, N. A., & Beasley, J. E. (2009). Mixed-integer programming approaches for index tracking and enhanced indexation. European Journal of Operational Research, 196(1), 384-399. doi:10.1016/j.ejor.2008.03.015Connor, G., & Leland, H. (1995). Cash Management for Index Tracking. Financial Analysts Journal, 51(6), 75-80. doi:10.2469/faj.v51.n6.1952Corielli, F., & Marcellino, M. (2006). Factor based index tracking. Journal of Banking & Finance, 30(8), 2215-2233. doi:10.1016/j.jbankfin.2005.07.012Derigs, U., & Nickel, N.-H. (2004). On a Local-Search Heuristic for a Class of Tracking Error Minimization Problems in Portfolio Management. Annals of Operations Research, 131(1-4), 45-77. doi:10.1023/b:anor.0000039512.98833.5aDose, C., & Cincotti, S. (2005). Clustering of financial time series with application to index and enhanced index tracking portfolio. Physica A: Statistical Mechanics and its Applications, 355(1), 145-151. doi:10.1016/j.physa.2005.02.078Focardi, S. M., & Fabozzi 3, F. J. (2004). A methodology for index tracking based on time-series clustering. Quantitative Finance, 4(4), 417-425. doi:10.1080/14697680400008668Gaivoronski, A. A., Krylov, S., & van der Wijst, N. (2005). Optimal portfolio selection and dynamic benchmark tracking. European Journal of Operational Research, 163(1), 115-131. doi:10.1016/j.ejor.2003.12.001Hallerbach, W. G., & Spronk, J. (2002). The relevance of MCDM for financial decisions. Journal of Multi-Criteria Decision Analysis, 11(4-5), 187-195. doi:10.1002/mcda.328Jarrett, J. E., & Schilling, J. (2008). DAILY VARIATION AND PREDICTING STOCK MARKET RETURNS FOR THE FRANKFURTER BÖRSE (STOCK MARKET). Journal of Business Economics and Management, 9(3), 189-198. doi:10.3846/1611-1699.2008.9.189-198Roll, R. (1992). A Mean/Variance Analysis of Tracking Error. The Journal of Portfolio Management, 18(4), 13-22. doi:10.3905/jpm.1992.701922Rudolf, M., Wolter, H.-J., & Zimmermann, H. (1999). A linear model for tracking error minimization. Journal of Banking & Finance, 23(1), 85-103. doi:10.1016/s0378-4266(98)00076-4Ruiz-Torrubiano, R., & Suárez, A. (2008). A hybrid optimization approach to index tracking. Annals of Operations Research, 166(1), 57-71. doi:10.1007/s10479-008-0404-4Rutkauskas, A. V., & Stasytyte, V. (s. f.). Decision Making Strategies in Global Exchange and Capital Markets. Advances and Innovations in Systems, Computing Sciences and Software Engineering, 17-22. doi:10.1007/978-1-4020-6264-3_4Tabata, Y., & Takeda, E. (1995). Bicriteria Optimization Problem of Designing an Index Fund. Journal of the Operational Research Society, 46(8), 1023-1032. doi:10.1057/jors.1995.139Teresienė, D. (2009). LITHUANIAN STOCK MARKET ANALYSIS USING A SET OF GARCH MODELS. Journal of Business Economics and Management, 10(4), 349-360. doi:10.3846/1611-1699.2009.10.349-36
    corecore