1,787 research outputs found

    An evolutionary approach to the extraction of object construction trees from 3D point clouds

    Get PDF
    In order to extract a construction tree from a finite set of points sampled on the surface of an object, we present an evolutionary algorithm that evolves set-theoretic expressions made of primitives fitted to the input point-set and modeling operations. To keep relatively simple trees, we use a penalty term in the objective function optimized by the evolutionary algorithm. We show with experiments successes but also limitations of this approach

    Automated Classification of Airborne Laser Scanning Point Clouds

    Full text link
    Making sense of the physical world has always been at the core of mapping. Up until recently, this has always dependent on using the human eye. Using airborne lasers, it has become possible to quickly "see" more of the world in many more dimensions. The resulting enormous point clouds serve as data sources for applications far beyond the original mapping purposes ranging from flooding protection and forestry to threat mitigation. In order to process these large quantities of data, novel methods are required. In this contribution, we develop models to automatically classify ground cover and soil types. Using the logic of machine learning, we critically review the advantages of supervised and unsupervised methods. Focusing on decision trees, we improve accuracy by including beam vector components and using a genetic algorithm. We find that our approach delivers consistently high quality classifications, surpassing classical methods

    development of a software to optimize and plan the acquisitions from uav and a first application in a post seismic environment

    Get PDF
    AbstractAn Unmanned Aerial Vehicle (UAV) is an aircraft without a human pilot on board. UAVs allow close-range photogrammetric acquisitions potentially useful for building large-scale cartography and acquisitions of building geometry. This is particularly useful in emergency situations where major accessibility problems limit the possibility of using conventional surveys. Presently, however, flights of this class of UAV are planned based only on the pilot's experience and they often acquire three or more times the number of images needed. This is clearly a time-consuming and autonomy-reducing procedure, which is certainly detrimental when extensive surveys are needed. For this reason new software, to plan the UAV's survey will be illustrated

    Utilization of the discrete differential evolution for optimization in multidimensional point clouds

    Get PDF
    The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.Web of Scienceart. no. 632953
    corecore