128,877 research outputs found

    Engineering failure analysis and design optimisation with HiP-HOPS

    Get PDF
    The scale and complexity of computer-based safety critical systems, like those used in the transport and manufacturing industries, pose significant challenges for failure analysis. Over the last decade, research has focused on automating this task. In one approach, predictive models of system failure are constructed from the topology of the system and local component failure models using a process of composition. An alternative approach employs model-checking of state automata to study the effects of failure and verify system safety properties. In this paper, we discuss these two approaches to failure analysis. We then focus on Hierarchically Performed Hazard Origin & Propagation Studies (HiP-HOPS) - one of the more advanced compositional approaches - and discuss its capabilities for automatic synthesis of fault trees, combinatorial Failure Modes and Effects Analyses, and reliability versus cost optimisation of systems via application of automatic model transformations. We summarise these contributions and demonstrate the application of HiP-HOPS on a simplified fuel oil system for a ship engine. In light of this example, we discuss strengths and limitations of the method in relation to other state-of-the-art techniques. In particular, because HiP-HOPS is deductive in nature, relating system failures back to their causes, it is less prone to combinatorial explosion and can more readily be iterated. For this reason, it enables exhaustive assessment of combinations of failures and design optimisation using computationally expensive meta-heuristics. (C) 2010 Elsevier Ltd. All rights reserved

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Complexity, BioComplexity, the Connectionist Conjecture and Ontology of Complexity\ud

    Get PDF
    This paper develops and integrates major ideas and concepts on complexity and biocomplexity - the connectionist conjecture, universal ontology of complexity, irreducible complexity of totality & inherent randomness, perpetual evolution of information, emergence of criticality and equivalence of symmetry & complexity. This paper introduces the Connectionist Conjecture which states that the one and only representation of Totality is the connectionist one i.e. in terms of nodes and edges. This paper also introduces an idea of Universal Ontology of Complexity and develops concepts in that direction. The paper also develops ideas and concepts on the perpetual evolution of information, irreducibility and computability of totality, all in the context of the Connectionist Conjecture. The paper indicates that the control and communication are the prime functionals that are responsible for the symmetry and complexity of complex phenomenon. The paper takes the stand that the phenomenon of life (including its evolution) is probably the nearest to what we can describe with the term “complexity”. The paper also assumes that signaling and communication within the living world and of the living world with the environment creates the connectionist structure of the biocomplexity. With life and its evolution as the substrate, the paper develops ideas towards the ontology of complexity. The paper introduces new complexity theoretic interpretations of fundamental biomolecular parameters. The paper also develops ideas on the methodology to determine the complexity of “true” complex phenomena.\u

    Developing a dominant logic of strategic innovation

    Get PDF
    Purpose: This paper aims to lay the foundations to develop a dominant logic and a common thematic framework of strategic innovation (SI) and to encourage consensus over the field’s core foundation of main themes. Design/methodology/approach: The paper explores the intersection between the constituent fields of strategic management and innovation management through a concept mapping process. The paper categorizes the main themes and search for common ground in order to develop the core thematic framework of SI. The paper looks at the sub-themes of SI in published research and develops a more detailed framework. The conceptual categories derived from the process are then placed in a logical sequence according to how they occur in practice or in the order of how the concepts develop from one other. Findings: The results yield seven main themes that form the main taxonomy of SI: types of SI, environmental analysis of SI, SI planning, enabling SI, collaborative networks, managing knowledge, and strategic outcomes. Research limitations/implications: The new thematic framework the paper is proposing for SI remains preliminary in nature and would need to be tried and tested by researchers and practitioners in order to gain acceptability. Academic rigor and methodological structure are not sufficient to determine whether our conceptual framework will become widely diffused in academia and industry. It would have to pass through an emergent, evolutionary process of selection, adoption and an inevitable degree of change and adaptation, just like any other innovation. Practical implications: The practical implications concern the production of instructive material and the application of strategic management initiatives in industry. The proposed themes and sub-themes can serve as a logical framework to develop and update publications, which have been instrumental in their own right to shape the field. The paper also provides a checklist of potential research projects in SI, which will improve and strengthen the field. The new framework provides a comprehensive checklist of strategic management initiatives that will help industry to initiate, plan and execute effective innovation strategies. Originality/value: The concept mapping of the themes of SI yields a new dominant logic, which will influence the evolution of the field and its relevance to both academia and industry

    Evaluating Model Testing and Model Checking for Finding Requirements Violations in Simulink Models

    Get PDF
    Matlab/Simulink is a development and simulation language that is widely used by the Cyber-Physical System (CPS) industry to model dynamical systems. There are two mainstream approaches to verify CPS Simulink models: model testing that attempts to identify failures in models by executing them for a number of sampled test inputs, and model checking that attempts to exhaustively check the correctness of models against some given formal properties. In this paper, we present an industrial Simulink model benchmark, provide a categorization of different model types in the benchmark, describe the recurring logical patterns in the model requirements, and discuss the results of applying model checking and model testing approaches to identify requirements violations in the benchmarked models. Based on the results, we discuss the strengths and weaknesses of model testing and model checking. Our results further suggest that model checking and model testing are complementary and by combining them, we can significantly enhance the capabilities of each of these approaches individually. We conclude by providing guidelines as to how the two approaches can be best applied together.Comment: 10 pages + 2 page reference

    Emergent processes as generation of discontinuities

    Get PDF
    In this article we analyse the problem of emergence in its diachronic dimension. In other words, we intend to deal with the generation of novelties in natural processes. Our approach aims at integrating some insights coming from Whitehead’s Philosophy of the Process with the epistemological framework developed by the “autopoietic” tradition. Our thesis is that the emergence of new entities and rules of interaction (new “fields of relatedness”) requires the development of discontinuous models of change. From this standpoint natural evolution can be conceived as a succession of emergences — each one realizing a novel “extended” present, described by distinct models — rather than as a single and continuous dynamics. This theoretical and epistemological framework is particularly suitable to the investigation of the origin of life, an emblematic example of this kind of processes

    Creativity as Cognitive design \ud The case of mesoscopic variables in Meta-Structures\ud

    Get PDF
    Creativity is an open problem which has been differently approached by several disciplines since a long time. In this contribution we consider as creative the constructivist design an observer does on the description levels of complex phenomena, such as the self-organized and emergent ones ( e.g., Bènard rollers, Belousov-Zhabotinsky reactions, flocks, swarms, and more radical cognitive and social emergences). We consider this design as related to the Gestaltian creation of a language fit for representing natural processes and the observer in an integrated way. Organised systems, both artificial and most of the natural ones are designed/ modelled according to a logical closed model which masters all the inter-relation between their constitutive elements, and which can be described by an algorithm or a single formal model. We will show there that logical openness and DYSAM (Dynamical Usage of Models) are the proper tools for those phenomena which cannot be described by algorithms or by a single formal model. The strong correlation between emergence and creativity suggests that an open model is the best way to provide a formal definition of creativity. A specific application relates to the possibility to shape the emergence of Collective Behaviours. Different modelling approaches have been introduced, based on symbolic as well as sub-symbolic rules of interaction to simulate collective phenomena by means of computational emergence. Another approach is based on modelling collective phenomena as sequences of Multiple Systems established by percentages of conceptually interchangeable agents taking on the same roles at different times and different roles at the same time. In the Meta-Structures project we propose to use mesoscopic variables as creative design, invention, good continuity and imitation of the description level. In the project we propose to define the coherence of sequences of Multiple Systems by using the values taken on by the dynamic mesoscopic clusters of its constitutive elements, such as the instantaneous number of elements having, in a flock, the same speed, distance from their nearest neighbours, direction and altitude. In Meta-Structures the collective behaviour’s coherence corresponds, for instance, to the scalar values taken by speed, distance, direction and altitude along time, through statistical strategies of interpolation, quasi-periodicity, levels of ergodicity and their reciprocal relationship. In this case the constructivist role of the observer is considered creative as it relates to neither non-linear replication nor transposition of levels of description and models used for artificial systems, like reductionism. Creativity rather lies in inventing new mesoscopic variables able to identify coherent patterns in complex systems. As it is known, mesoscopic variables represent partial macroscopic properties of a system by using some of the microscopic degrees of freedom possessed by composing elements. Such partial usage of microscopic as well as macroscopic properties allows a kind of Gestaltian continuity and imitation between levels of descriptions for mesoscopic modelling. \ud \u

    The Algorithmic Origins of Life

    Full text link
    Although it has been notoriously difficult to pin down precisely what it is that makes life so distinctive and remarkable, there is general agreement that its informational aspect is one key property, perhaps the key property. The unique informational narrative of living systems suggests that life may be characterized by context-dependent causal influences, and in particular, that top-down (or downward) causation -- where higher-levels influence and constrain the dynamics of lower-levels in organizational hierarchies -- may be a major contributor to the hierarchal structure of living systems. Here we propose that the origin of life may correspond to a physical transition associated with a shift in causal structure, where information gains direct, and context-dependent causal efficacy over the matter it is instantiated in. Such a transition may be akin to more traditional physical transitions (e.g. thermodynamic phase transitions), with the crucial distinction that determining which phase (non-life or life) a given system is in requires dynamical information and therefore can only be inferred by identifying causal architecture. We discuss some potential novel research directions based on this hypothesis, including potential measures of such a transition that may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.Comment: 13 pages, 1 tabl
    corecore