2,156 research outputs found

    Ensemble Learning for Free with Evolutionary Algorithms ?

    Get PDF
    Evolutionary Learning proceeds by evolving a population of classifiers, from which it generally returns (with some notable exceptions) the single best-of-run classifier as final result. In the meanwhile, Ensemble Learning, one of the most efficient approaches in supervised Machine Learning for the last decade, proceeds by building a population of diverse classifiers. Ensemble Learning with Evolutionary Computation thus receives increasing attention. The Evolutionary Ensemble Learning (EEL) approach presented in this paper features two contributions. First, a new fitness function, inspired by co-evolution and enforcing the classifier diversity, is presented. Further, a new selection criterion based on the classification margin is proposed. This criterion is used to extract the classifier ensemble from the final population only (Off-line) or incrementally along evolution (On-line). Experiments on a set of benchmark problems show that Off-line outperforms single-hypothesis evolutionary learning and state-of-art Boosting and generates smaller classifier ensembles

    Modelos de clasificación multi-etiqueta para datos heterogéneos: un enfoque basado en ensembles

    Get PDF
    In recent years, the multi-label classification task has gained the attention of the scientific community given its ability to solve real-world problems where each instance of the dataset may be associated with several class labels simultaneously. For example, in medical problems each patient may be affected by several diseases at the same time, and in multimedia categorization problems, each item might be related with different tags or topics. Thus, given the nature of these problems, dealing with them as traditional classification problems where just one class label is assigned to each instance, would lead to a lose of information. However, the fact of having more than one label associated with each instance leads to new classification challenges that should be addressed, such as modeling the compound dependencias among labels, the imbalance of the label space, and the high dimensionality of the output space. A large number of methods for multi-label classification has been proposed in the literature, including several ensemble-based methods. Ensemble learning is a technique which is based on combining the outputs of many diverse base models, in order to outperform each of the separate members. In multi-label classification, ensemble methods are those that combine the predictions of several multi-label classifiers, and these methods have shown to outperform simpler multi-label classifiers. Therefore, given its great performance, we focused our research on the study of ensemble-based methods for multi-label classification. The first objective of this dissertation is to perform an thorough review of the state-of-the-art ensembles of multi-label classifiers. Its aim is twofold: I) study different ensembles of multi-label classifiers proposed in the literature, and categorize them according to their characteristics proposing a novel taxonomy; and II) perform an experimental study to find the method or family of methods that performs better depending on the characteristics of the data, as well as provide then some guidelines to select the best method according to the characteristics of a given problem. Since most of the ensemble methods for multi-label classification are based on creating diverse members by randomly selecting instances, input features, or labels, our second and main objective is to propose novel ensemble methods for multi-label classification where the characteristics of the data are taken into account. For this purpose, we first propose an evolutionary algorithm able to build an ensemble of multi-label classifiers, where each of the individuals of the population is an entire ensemble. This approach is able to model the relationships among the labels with a relative low complexity and imbalance of the output space, also considering these characteristics to guide the learning process. Furthermore, it looks for an optimal structure of the ensemble not only considering its predictive performance, but also the number of times that each label appears in it. In this way, all labels are expected to appear a similar number of times in the ensemble, not neglecting any of them regardless of their frequency. Then, we develop a second evolutionary algorithm able to build ensembles of multi-label classifiers, but in this case each individual of the population is a hypothetical member of the ensemble, and not the entire ensemble. The fact of evolving members of the ensemble separately makes the algorithm less computationally complex and able to determine the quality of each member separately. However, a method to select the ensemble members needs to be defined. This process selects those classifiers that are both accurate but also diverse among them to form the ensemble, also controlling that all labels appear a similar number of times in the final ensemble. In all experimental studies, the methods are compared using rigorous experimental setups and statistical tests over many evaluation metrics and reference datasets in multi-label classification. The experiments confirm that the proposed methods obtain significantly better and more consistent performance than the stateof- the-art methods in multi-label classification. Furthermore, the second proposal is proven to be more efficient than the first one, given the use of separate classifiers as individuals.En los últimos años, el paradigma de clasificación multi-etiqueta ha ganado atención en la comunidad científica, dada su habilidad para resolver problemas reales donde cada instancia del conjunto de datos puede estar asociada con varias etiquetas de clase simultáneamente. Por ejemplo, en problemas médicos cada paciente puede estar afectado por varias enfermedades a la vez, o en problemas de categorización multimedia, cada ítem podría estar relacionado con varias etiquetas o temas. Dada la naturaleza de estos problemas, tratarlos como problemas de clasificación tradicional donde cada instancia puede tener asociada únicamente una etiqueta de clase, conllevaría una pérdida de información. Sin embargo, el hecho de tener más de una etiqueta asociada con cada instancia conlleva la aparición de nuevos retos que deben ser abordados, como modelar las dependencias entre etiquetas, el desbalanceo de etiquetas, y la alta dimensionalidad del espacio de salida. En la literatura se han propuesto un gran número de métodos para clasificación multi-etiqueta, incluyendo varios basados en ensembles. El aprendizaje basado en ensembles combina las salidas de varios modelos más simples y diversos entre sí, de cara a conseguir un mejor rendimiento que cada miembro por separado. En clasificación multi-etiqueta, se consideran ensembles aquellos métodos que combinan las predicciones de varios clasificadores multi-etiqueta, y estos métodos han mostrado conseguir un mejor rendimiento que los clasificadores multi-etiqueta sencillos. Por tanto, dado su buen rendimiento, centramos nuestra investigación en el estudio de métodos basados en ensembles para clasificación multi-etiqueta. El primer objetivo de esta tesis el realizar una revisión a fondo del estado del arte en ensembles de clasificadores multi-etiqueta. El objetivo de este estudio es doble: I) estudiar diferentes ensembles de clasificadores multi-etiqueta propuestos en la literatura, y categorizarlos de acuerdo a sus características proponiendo una nueva taxonomía; y II) realizar un estudio experimental para encontrar el método o familia de métodos que obtiene mejores resultados dependiendo de las características de los datos, así como ofrecer posteriormente algunas guías para seleccionar el mejor método de acuerdo a las características de un problema dado. Dado que la mayoría de ensembles para clasificación multi-etiqueta están basados en la creación de miembros diversos seleccionando aleatoriamente instancias, atributos, o etiquetas; nuestro segundo y principal objetivo es proponer nuevos modelos de ensemble para clasificación multi-etiqueta donde se tengan en cuenta las características de los datos. Para ello, primero proponemos un algoritmo evolutivo capaz de generar un ensemble de clasificadores multi-etiqueta, donde cada uno de los individuos de la población es un ensemble completo. Este enfoque es capaz de modelar las relaciones entre etiquetas con una complejidad y desbalanceo de etiquetas relativamente bajos, considerando también estas características para guiar el proceso de aprendizaje. Además, busca una estructura óptima para el ensemble, no solo considerando su capacidad predictiva, pero también teniendo en cuenta el número de veces que aparece cada etiqueta en él. De este modo, se espera que todas las etiquetas aparezcan un número de veces similar en el ensemble, sin despreciar ninguna de ellas independientemente de su frecuencia. Posteriormente, desarrollamos un segundo algoritmo evolutivo capaz de construir ensembles de clasificadores multi-etiqueta, pero donde cada individuo de la población es un hipotético miembro del ensemble, en lugar del ensemble completo. El hecho de evolucionar los miembros del ensemble por separado hace que el algoritmo sea menos complejo y capaz de determinar la calidad de cada miembro por separado. Sin embargo, también es necesario definir un método para seleccionar los miembros que formarán el ensemble. Este proceso selecciona aquellos clasificadores que sean tanto precisos como diversos entre ellos, también controlando que todas las etiquetas aparezcan un número similar de veces en el ensemble final. En todos los estudios experimentales realizados, los métodos han sido comparados utilizando rigurosas configuraciones experimentales y test estadísticos, involucrando varias métricas de evaluación y conjuntos de datos de referencia en clasificación multi-etiqueta. Los experimentos confirman que los métodos propuestos obtienen un rendimiento significativamente mejor y más consistente que los métodos en el estado del arte. Además, se demuestra que el segundo algoritmo propuesto es más eficiente que el primero, dado el uso de individuos representando clasificadores por separado

    A study of hierarchical and flat classification of proteins

    Get PDF
    Automatic classification of proteins using machine learning is an important problem that has received significant attention in the literature. One feature of this problem is that expert-defined hierarchies of protein classes exist and can potentially be exploited to improve classification performance. In this article we investigate empirically whether this is the case for two such hierarchies. We compare multi-class classification techniques that exploit the information in those class hierarchies and those that do not, using logistic regression, decision trees, bagged decision trees, and support vector machines as the underlying base learners. In particular, we compare hierarchical and flat variants of ensembles of nested dichotomies. The latter have been shown to deliver strong classification performance in multi-class settings. We present experimental results for synthetic, fold recognition, enzyme classification, and remote homology detection data. Our results show that exploiting the class hierarchy improves performance on the synthetic data, but not in the case of the protein classification problems. Based on this we recommend that strong flat multi-class methods be used as a baseline to establish the benefit of exploiting class hierarchies in this area

    Multi-label classification models for heterogeneous data: an ensemble-based approach.

    Get PDF
    In recent years, the multi-label classification gained attention of the scientific community given its ability to solve real-world problems where each instance of the dataset may be associated with several class labels simultaneously, such as multimedia categorization or medical problems. The first objective of this dissertation is to perform a thorough review of the state-of-the-art ensembles of multi-label classifiers (EMLCs). Its aim is twofold: 1) study state-of-the-art ensembles of multi-label classifiers and categorize them proposing a novel taxonomy; and 2) perform an experimental study to give some tips and guidelines to select the method that perform the best according to the characteristics of a given problem. Since most of the EMLCs are based on creating diverse members by randomly selecting instances, input features, or labels, our main objective is to propose novel ensemble methods while considering the characteristics of the data. In this thesis, we propose two evolutionary algorithms to build EMLCs. The first proposal encodes an entire EMLC in each individual, where each member is focused on a small subset of the labels. On the other hand, the second algorithm encodes separate members in each individual, then combining the individuals of the population to build the ensemble. Finally, both methods are demonstrated to be more consistent and perform significantly better than state-of-the-art methods in multi-label classification

    A Comparative Analysis of Ensemble Classifiers: Case Studies in Genomics

    Full text link
    The combination of multiple classifiers using ensemble methods is increasingly important for making progress in a variety of difficult prediction problems. We present a comparative analysis of several ensemble methods through two case studies in genomics, namely the prediction of genetic interactions and protein functions, to demonstrate their efficacy on real-world datasets and draw useful conclusions about their behavior. These methods include simple aggregation, meta-learning, cluster-based meta-learning, and ensemble selection using heterogeneous classifiers trained on resampled data to improve the diversity of their predictions. We present a detailed analysis of these methods across 4 genomics datasets and find the best of these methods offer statistically significant improvements over the state of the art in their respective domains. In addition, we establish a novel connection between ensemble selection and meta-learning, demonstrating how both of these disparate methods establish a balance between ensemble diversity and performance.Comment: 10 pages, 3 figures, 8 tables, to appear in Proceedings of the 2013 International Conference on Data Minin

    Coupling different methods for overcoming the class imbalance problem

    Get PDF
    Many classification problems must deal with imbalanced datasets where one class \u2013 the majority class \u2013 outnumbers the other classes. Standard classification methods do not provide accurate predictions in this setting since classification is generally biased towards the majority class. The minority classes are oftentimes the ones of interest (e.g., when they are associated with pathological conditions in patients), so methods for handling imbalanced datasets are critical. Using several different datasets, this paper evaluates the performance of state-of-the-art classification methods for handling the imbalance problem in both binary and multi-class datasets. Different strategies are considered, including the one-class and dimension reduction approaches, as well as their fusions. Moreover, some ensembles of classifiers are tested, in addition to stand-alone classifiers, to assess the effectiveness of ensembles in the presence of imbalance. Finally, a novel ensemble of ensembles is designed specifically to tackle the problem of class imbalance: the proposed ensemble does not need to be tuned separately for each dataset and outperforms all the other tested approaches. To validate our classifiers we resort to the KEEL-dataset repository, whose data partitions (training/test) are publicly available and have already been used in the open literature: as a consequence, it is possible to report a fair comparison among different approaches in the literature. Our best approach (MATLAB code and datasets not easily accessible elsewhere) will be available at https://www.dei.unipd.it/node/2357

    TSE-IDS: A Two-Stage Classifier Ensemble for Intelligent Anomaly-based Intrusion Detection System

    Get PDF
    Intrusion detection systems (IDS) play a pivotal role in computer security by discovering and repealing malicious activities in computer networks. Anomaly-based IDS, in particular, rely on classification models trained using historical data to discover such malicious activities. In this paper, an improved IDS based on hybrid feature selection and two-level classifier ensembles is proposed. An hybrid feature selection technique comprising three methods, i.e. particle swarm optimization, ant colony algorithm, and genetic algorithm, is utilized to reduce the feature size of the training datasets (NSL-KDD and UNSW-NB15 are considered in this paper). Features are selected based on the classification performance of a reduced error pruning tree (REPT) classifier. Then, a two-level classifier ensembles based on two meta learners, i.e., rotation forest and bagging, is proposed. On the NSL-KDD dataset, the proposed classifier shows 85.8% accuracy, 86.8% sensitivity, and 88.0% detection rate, which remarkably outperform other classification techniques recently proposed in the literature. Results regarding the UNSW-NB15 dataset also improve the ones achieved by several state of the art techniques. Finally, to verify the results, a two-step statistical significance test is conducted. This is not usually considered by IDS research thus far and, therefore, adds value to the experimental results achieved by the proposed classifier
    corecore