100,839 research outputs found

    Particle Swarm Optimization for the Clustering of Wireless Sensors

    Get PDF
    Clustering is necessary for data aggregation, hierarchical routing, optimizing sleep patterns, election of extremal sensors, optimizing coverage and resource allocation, reuse of frequency bands and codes, and conserving energy. Optimal clustering is typically an NP-hard problem. Solutions to NP-hard problems involve searches through vast spaces of possible solutions. Evolutionary algorithms have been applied successfully to a variety of NP-hard problems. We explore one such approach, Particle Swarm Optimization (PSO), an evolutionary programming technique where a \u27swarm\u27 of test solutions, analogous to a natural swarm of bees, ants or termites, is allowed to interact and cooperate to find the best solution to the given problem. We use the PSO approach to cluster sensors in a sensor network. The energy efficiency of our clustering in a data-aggregation type sensor network deployment is tested using a modified LEACH-C code. The PSO technique with a recursive bisection algorithm is tested against random search and simulated annealing; the PSO technique is shown to be robust. We further investigate developing a distributed version of the PSO algorithm for clustering optimally a wireless sensor network

    Evolutionary Latent Class Clustering of Qualitative Data

    Get PDF
    The latent class model or multivariate multinomial mixture is a powerful model for clustering discrete data. This model is expected to be useful to represent non-homogeneous populations. It uses a conditional independence assumption given the latent class to which a statistical unit is belonging. However, whereas a predictive approach of cluster analysis from qualitative data can be easily derived from a fully Bayesian analysis with Jeffreys non informative prior distributions, it leads to a criterion (the integrated completed likelihood derived from the latent class model) that proves difficult to optimize by the standard approach based on the EM algorithm. An Evolutionary Algorithms is designed to tackle this discrete optimization problem, and an extensive parameter study on a large artificial dataset allows to derive stable parameters. A Monte Carlo approach is used to validate those parameters on other artificial datasets, as well as on some well-known real data: the Evolutionary Algorithm seems to repeatedly perform better than other standard clustering techniques on the same data

    Parameter Setting for Evolutionary Latent Class Clustering

    Get PDF
    International audienceThe latent class model or multivariate multinomial mixture is a powerful model for clustering discrete data. This model is expected to be useful to represent non-homogeneous populations. It uses a conditional independence assumption given the latent class to which a statistical unit is belonging. However, it leads to a criterion that proves difficult to optimise by the standard approach based on the EM algorithm. An Evolutionary Algorithms is designed to tackle this discrete optimisation problem, and an extensive parameter study on a large artificial dataset allows to derive stable parameters. Those parameters are then validated on other artificial datasets, as well as on some well-known real data: the Evolutionary Algorithm performs repeatedly better than other standard clustering techniques on the same data

    An evolutionary game theoretic approach for stable clustering in vehicular ad hoc networks (VANETs)

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Finding and maintaining efficient routes for data dissemination in VANETs is a very challenging problem due to the highly dynamic characteristics of VANETs. Clustering in Vehicular Ad hoc Networks (VANETs) is one of the control schemes used to provide efficient and stable routes for data dissemination in VANETs. The rapid changes in the topology of VANETs have instigated frequent cluster formation and reorganization which has seriously affected route stability in Vehicular Ad hoc Networks. Considerable work has been reported into the development of clustering protocols while keeping in view the highly dynamic topology of VANETs, but the objective of imbuing the system with a stable underlay is still in the infant stage. The analytical models used for studying the behaviour of Vehicular Ad hoc Networks have been scarced due to distributed, highly dynamic and self-organizing characteristics of VANETs. In contrast, game theory is emerging as a novel analytical tool that can be used to tackle the technical challenges concerning the current and future problems in wireless and communication networks. A two-layer novel Evolutionary Game Theoretic (EGT) framework is presented to solve the problem of in-stable clustering in VANETs. The aim of this research is to model the interactions of vehicular nodes in VANETs, to retain a stable clustering state of the network with evolutionary equilibrium as the solution of this game. A stable clustering scenario in VANETs is modelled with a reinforcement learning approach to reach the solution of an evolutionary equilibrium. Performance of the proposed “evolutionary game based clustering algorithm” is empirically investigated in different cases and the simulation results show that the system retains cluster stability

    A genetic graph-based approach for partitional clustering

    Get PDF
    Clustering is one of the most versatile tools for data analysis. In the recent years, clustering that seeks the continuity of data (in opposition to classical centroid-based approaches) has attracted an increasing research interest. It is a challenging problem with a remarkable practical interest. The most popular continuity clustering method is the spectral clustering (SC) algorithm, which is based on graph cut: It initially generates a similarity graph using a distance measure and then studies its graph spectrum to find the best cut. This approach is sensitive to the parameters of the metric, and a correct parameter choice is critical to the quality of the cluster. This work proposes a new algorithm, inspired by SC, that reduces the parameter dependency while maintaining the quality of the solution. The new algorithm, named genetic graph-based clustering (GGC), takes an evolutionary approach introducing a genetic algorithm (GA) to cluster the similarity graph. The experimental validation shows that GGC increases robustness of SC and has competitive performance in comparison with classical clustering methods, at least, in the synthetic and real dataset used in the experiments

    A multi-objective genetic graph-based clustering algorithm with memory optimization

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. H. D. Menéndez, D. F. Barrero, and D. Camacho, "A multi-objective genetic graph-based clustering algorithm with memory optimization", in 2013 IEEE Congress on Evolutionary Computation (CEC), 2013, pp. 3174 - 3181Clustering is one of the most versatile tools for data analysis. Over the last few years, clustering that seeks the continuity of data (in opposition to classical centroid-based approaches) has attracted an increasing research interest. It is a challenging problem with a remarkable practical interest. The most popular continuity clustering method is the Spectral Clustering algorithm, which is based on graph cut: it initially generates a Similarity Graph using a distance measure and then uses its Graph Spectrum to find the best cut. Memory consuption is a serious limitation in that algorithm: The Similarity Graph representation usually requires a very large matrix with a high memory cost. This work proposes a new algorithm, based on a previous implementation named Genetic Graph-based Clustering (GGC), that improves the memory usage while maintaining the quality of the solution. The new algorithm, called Multi-Objective Genetic Graph-based Clustering (MOGGC), uses an evolutionary approach introducing a Multi-Objective Genetic Algorithm to manage a reduced version of the Similarity Graph. The experimental validation shows that MOGGC increases the memory efficiency, maintaining and improving the GGC results in the synthetic and real datasets used in the experiments. An experimental comparison with several classical clustering methods (EM, SC and K-means) has been included to show the efficiency of the proposed algorithm.This work has been partly supported by: Spanish Ministry of Science and Education under project TIN2010-19872

    Evolutionary Latent Class Clustering of Qualitative Data

    Get PDF
    The latent class model or multivariate multinomial mixture is a powerful model for clustering discrete data. This model is expected to be useful to represent non-homogeneous populations. It uses a conditional independence assumption given the latent class to which a statistical unit is belonging. However, whereas a predictive approach of cluster analysis from qualitative data can be easily derived from a fully Bayesian analysis with Jeffreys non informative prior distributions, it leads to a criterion (the integrated completed likelihood derived from the latent class model) that proves difficult to optimize by the standard approach based on the EM algorithm. An Evolutionary Algorithms is designed to tackle this discrete optimization problem, and an extensive parameter study on a large artificial dataset allows to derive stable parameters. A Monte Carlo approach is used to validate those parameters on other artificial datasets, as well as on some well-known real data: the Evolutionary Algorithm seems to repeatedly perform better than other standard clustering techniques on the same data
    • …
    corecore