311 research outputs found

    Evolutionary algorithms and weighting strategies for feature selection in predictive data mining

    Get PDF
    The improvements in Deoxyribonucleic Acid (DNA) microarray technology mean that thousands of genes can be profiled simultaneously in a quick and efficient manner. DNA microarrays are increasingly being used for prediction and early diagnosis in cancer treatment. Feature selection and classification play a pivotal role in this process. The correct identification of an informative subset of genes may directly lead to putative drug targets. These genes can also be used as an early diagnosis or predictive tool. However, the large number of features (many thousands) present in a typical dataset present a formidable barrier to feature selection efforts. Many approaches have been presented in literature for feature selection in such datasets. Most of them use classical statistical approaches (e.g. correlation). Classical statistical approaches, although fast, are incapable of detecting non-linear interactions between features of interest. By default, Evolutionary Algorithms (EAs) are capable of taking non-linear interactions into account. Therefore, EAs are very promising for feature selection in such datasets. It has been shown that dimensionality reduction increases the efficiency of feature selection in large and noisy datasets such as DNA microarray data. The two-phase Evolutionary Algorithm/k-Nearest Neighbours (EA/k-NN) algorithm is a promising approach that carries out initial dimensionality reduction as well as feature selection and classification. This thesis further investigates the two-phase EA/k-NN algorithm and also introduces an adaptive weights scheme for the k-Nearest Neighbours (k-NN) classifier. It also introduces a novel weighted centroid classification technique and a correlation guided mutation approach. Results show that the weighted centroid approach is capable of out-performing the EA/k-NN algorithm across five large biomedical datasets. It also identifies promising new areas of research that would complement the techniques introduced and investigated

    Gene selection for cancer classification with the help of bees

    Full text link

    Computational Intelligence Based Classifier Fusion Models for Biomedical Classification Applications

    Get PDF
    The generalization abilities of machine learning algorithms often depend on the algorithms’ initialization, parameter settings, training sets, or feature selections. For instance, SVM classifier performance largely relies on whether the selected kernel functions are suitable for real application data. To enhance the performance of individual classifiers, this dissertation proposes classifier fusion models using computational intelligence knowledge to combine different classifiers. The first fusion model called T1FFSVM combines multiple SVM classifiers through constructing a fuzzy logic system. T1FFSVM can be improved by tuning the fuzzy membership functions of linguistic variables using genetic algorithms. The improved model is called GFFSVM. To better handle uncertainties existing in fuzzy MFs and in classification data, T1FFSVM can also be improved by applying type-2 fuzzy logic to construct a type-2 fuzzy classifier fusion model (T2FFSVM). T1FFSVM, GFFSVM, and T2FFSVM use accuracy as a classifier performance measure. AUC (the area under an ROC curve) is proved to be a better classifier performance metric. As a comparison study, AUC-based classifier fusion models are also proposed in the dissertation. The experiments on biomedical datasets demonstrate promising performance of the proposed classifier fusion models comparing with the individual composing classifiers. The proposed classifier fusion models also demonstrate better performance than many existing classifier fusion methods. The dissertation also studies one interesting phenomena in biology domain using machine learning and classifier fusion methods. That is, how protein structures and sequences are related each other. The experiments show that protein segments with similar structures also share similar sequences, which add new insights into the existing knowledge on the relation between protein sequences and structures: similar sequences share high structure similarity, but similar structures may not share high sequence similarity

    Hybrid ACO and SVM algorithm for pattern classification

    Get PDF
    Ant Colony Optimization (ACO) is a metaheuristic algorithm that can be used to solve a variety of combinatorial optimization problems. A new direction for ACO is to optimize continuous and mixed (discrete and continuous) variables. Support Vector Machine (SVM) is a pattern classification approach originated from statistical approaches. However, SVM suffers two main problems which include feature subset selection and parameter tuning. Most approaches related to tuning SVM parameters discretize the continuous value of the parameters which will give a negative effect on the classification performance. This study presents four algorithms for tuning the SVM parameters and selecting feature subset which improved SVM classification accuracy with smaller size of feature subset. This is achieved by performing the SVM parameters’ tuning and feature subset selection processes simultaneously. Hybridization algorithms between ACO and SVM techniques were proposed. The first two algorithms, ACOR-SVM and IACOR-SVM, tune the SVM parameters while the second two algorithms, ACOMV-R-SVM and IACOMV-R-SVM, tune the SVM parameters and select the feature subset simultaneously. Ten benchmark datasets from University of California, Irvine, were used in the experiments to validate the performance of the proposed algorithms. Experimental results obtained from the proposed algorithms are better when compared with other approaches in terms of classification accuracy and size of the feature subset. The average classification accuracies for the ACOR-SVM, IACOR-SVM, ACOMV-R and IACOMV-R algorithms are 94.73%, 95.86%, 97.37% and 98.1% respectively. The average size of feature subset is eight for the ACOR-SVM and IACOR-SVM algorithms and four for the ACOMV-R and IACOMV-R algorithms. This study contributes to a new direction for ACO that can deal with continuous and mixed-variable ACO

    Challenges in the Analysis of Mass-Throughput Data: A Technical Commentary from the Statistical Machine Learning Perspective

    Get PDF
    Sound data analysis is critical to the success of modern molecular medicine research that involves collection and interpretation of mass-throughput data. The novel nature and high-dimensionality in such datasets pose a series of nontrivial data analysis problems. This technical commentary discusses the problems of over-fitting, error estimation, curse of dimensionality, causal versus predictive modeling, integration of heterogeneous types of data, and lack of standard protocols for data analysis. We attempt to shed light on the nature and causes of these problems and to outline viable methodological approaches to overcome them

    Analysing functional genomics data using novel ensemble, consensus and data fusion techniques

    Get PDF
    Motivation: A rapid technological development in the biosciences and in computer science in the last decade has enabled the analysis of high-dimensional biological datasets on standard desktop computers. However, in spite of these technical advances, common properties of the new high-throughput experimental data, like small sample sizes in relation to the number of features, high noise levels and outliers, also pose novel challenges. Ensemble and consensus machine learning techniques and data integration methods can alleviate these issues, but often provide overly complex models which lack generalization capability and interpretability. The goal of this thesis was therefore to develop new approaches to combine algorithms and large-scale biological datasets, including novel approaches to integrate analysis types from different domains (e.g. statistics, topological network analysis, machine learning and text mining), to exploit their synergies in a manner that provides compact and interpretable models for inferring new biological knowledge. Main results: The main contributions of the doctoral project are new ensemble, consensus and cross-domain bioinformatics algorithms, and new analysis pipelines combining these techniques within a general framework. This framework is designed to enable the integrative analysis of both large- scale gene and protein expression data (including the tools ArrayMining, Top-scoring pathway pairs and RNAnalyze) and general gene and protein sets (including the tools TopoGSA , EnrichNet and PathExpand), by combining algorithms for different statistical learning tasks (feature selection, classification and clustering) in a modular fashion. Ensemble and consensus analysis techniques employed within the modules are redesigned such that the compactness and interpretability of the resulting models is optimized in addition to the predictive accuracy and robustness. The framework was applied to real-word biomedical problems, with a focus on cancer biology, providing the following main results: (1) The identification of a novel tumour marker gene in collaboration with the Nottingham Queens Medical Centre, facilitating the distinction between two clinically important breast cancer subtypes (framework tool: ArrayMining) (2) The prediction of novel candidate disease genes for Alzheimer’s disease and pancreatic cancer using an integrative analysis of cellular pathway definitions and protein interaction data (framework tool: PathExpand, collaboration with the Spanish National Cancer Centre) (3) The prioritization of associations between disease-related processes and other cellular pathways using a new rule-based classification method integrating gene expression data and pathway definitions (framework tool: Top-scoring pathway pairs) (4) The discovery of topological similarities between differentially expressed genes in cancers and cellular pathway definitions mapped to a molecular interaction network (framework tool: TopoGSA, collaboration with the Spanish National Cancer Centre) In summary, the framework combines the synergies of multiple cross-domain analysis techniques within a single easy-to-use software and has provided new biological insights in a wide variety of practical settings

    Machine learning and soft computing approaches to microarray differential expression analysis and feature selection.

    Get PDF
    Differential expression analysis and feature selection is central to gene expression microarray data analysis. Standard approaches are flawed with the arbitrary assignment of cut-off parameters and the inability to adapt to the particular data set under analysis. Presented in this thesis are three novel approaches to microarray data feature selection and differential expression analysis based on various machine learning and soft computing paradigms. The first approach uses a Separability Index to select ranked genes, making gene selection less arbitrary and more data intrinsic. The second approach is a novel gene ranking system, the Fuzzy Gene Filter, which provides a more holistic and adaptive approach to ranking genes. The third approach is based on a Stochastic Search paradigm and uses the Population Based Incremental Learning algorithm to identify an optimal gene set with maximum inter-class distinction. All three approaches were implemented and tested on a number of data sets and the results compared to those of standard approaches. The Separability Index approach attained a K-Nearest Neighbour classification accuracy of 92%, outperforming the standard approach which attained an accuracy of 89.6%. The gene list identified also displayed significant functional enrichment. The Fuzzy Gene Filter also outperformed standard approaches, attaining significantly higher accuracies for all of the classifiers tested, on both data sets (p < 0.0231 for the prostate data set and p < 0.1888 for the lymphoma data set). Population Based Incremental Learning outperformed Genetic Algorithm, identifying a maximum Separability Index of 97.04% (as opposed to 96.39%). Future developments include incorporating biological knowledge when ranking genes using the Fuzzy Gene Filter as well as incorporating a functional enrichment assessment in the fitness function of the Population Based Incremental Learning algorithm
    corecore