4,064 research outputs found

    An Event-Controlled Online Trajectory Generator Based on the Human-Robot Interaction Force Processing

    No full text
    International audienceThe problem of robotic co-manipulation is often addressed using impedance control based methods where we seek to establish a mathematical relation between the velocity of the human-robot interaction point and the force applied by the human operator at this point. This paper addresses the problem of co-manipulation for handling tasks seen as a constrained optimal control problem. The proposed point of view relies on the implementation of a specific online trajectory generator (OTG) associated to a kinematic feedback loop. This OTG is designed so as to translate the human operator intentions to ideal trajectories that the robot must follow. It works as an automaton with two states of motion whose transitions are controlled by comparing the magnitude of the force to an adjustable threshold, in order to enable the operator to keep authority over the robot's states of motion. To ensure the smoothness of the interaction, we propose to generate a velocity profile collinear to the force applied at the interaction point. The feedback control loop is then used to satisfy the requirements of stability and of trajectory tracking to guarantee assistance and operator security. The overall strategy is applied to the penducobot problem

    A framework for safe human-humanoid coexistence

    Get PDF
    This work is focused on the development of a safety framework for Human-Humanoid coexistence, with emphasis on humanoid locomotion. After a brief introduction to the fundamental concepts of humanoid locomotion, the two most common approaches for gait generation are presented, and are extended with the inclusion of a stability condition to guarantee the boundedness of the generated trajectories. Then the safety framework is presented, with the introduction of different safety behaviors. These behaviors are meant to enhance the overall level of safety during any robot operation. Proactive behaviors will enhance or adapt the current robot operations to reduce the risk of danger, while override behaviors will stop the current robot activity in order to take action against a particularly dangerous situation. A state machine is defined to control the transitions between the behaviors. The behaviors that are strictly related to locomotion are subsequently detailed, and an implementation is proposed and validated. A possible implementation of the remaining behaviors is proposed through the review of related works that can be found in literature

    Learning-based methods for planning and control of humanoid robots

    Get PDF
    Nowadays, humans and robots are more and more likely to coexist as time goes by. The anthropomorphic nature of humanoid robots facilitates physical human-robot interaction, and makes social human-robot interaction more natural. Moreover, it makes humanoids ideal candidates for many applications related to tasks and environments designed for humans. No matter the application, an ubiquitous requirement for the humanoid is to possess proper locomotion skills. Despite long-lasting research, humanoid locomotion is still far from being a trivial task. A common approach to address humanoid locomotion consists in decomposing its complexity by means of a model-based hierarchical control architecture. To cope with computational constraints, simplified models for the humanoid are employed in some of the architectural layers. At the same time, the redundancy of the humanoid with respect to the locomotion task as well as the closeness of such a task to human locomotion suggest a data-driven approach to learn it directly from experience. This thesis investigates the application of learning-based techniques to planning and control of humanoid locomotion. In particular, both deep reinforcement learning and deep supervised learning are considered to address humanoid locomotion tasks in a crescendo of complexity. First, we employ deep reinforcement learning to study the spontaneous emergence of balancing and push recovery strategies for the humanoid, which represent essential prerequisites for more complex locomotion tasks. Then, by making use of motion capture data collected from human subjects, we employ deep supervised learning to shape the robot walking trajectories towards an improved human-likeness. The proposed approaches are validated on real and simulated humanoid robots. Specifically, on two versions of the iCub humanoid: iCub v2.7 and iCub v3

    A Cognitive Robot Control Architecture for Autonomous Execution of Surgical Tasks

    Get PDF
    The research on medical robotics is starting to address the autonomous execution of surgical tasks, without effective intervention of humans apart from supervision and task configuration. This paper addresses the complete automation of a surgical robot by combining advanced sensing, cognition and control capabilities, developed according to rigorous assessment of surgical require- ments, formal specification of robotic system behavior and software design and implementation based on solid tools and frame- works. In particular, the paper focuses on the cognitive control architecture and its development process, based on formal modeling and verification methods as best practices to ensure safe and reliable behavior. Full implementation of the proposed architecture has been tested on an experimental setup including a novel robot specifically designed for surgical applications, but adaptable to different selected tasks (i.e. needle insertion, wound suturing)

    SANTO: Social Aerial NavigaTion in Outdoors

    Get PDF
    In recent years, the advances in remote connectivity, miniaturization of electronic components and computing power has led to the integration of these technologies in daily devices like cars or aerial vehicles. From these, a consumer-grade option that has gained popularity are the drones or unmanned aerial vehicles, namely quadrotors. Although until recently they have not been used for commercial applications, their inherent potential for a number of tasks where small and intelligent devices are needed is huge. However, although the integrated hardware has advanced exponentially, the refinement of software used for these applications has not beet yet exploited enough. Recently, this shift is visible in the improvement of common tasks in the field of robotics, such as object tracking or autonomous navigation. Moreover, these challenges can become bigger when taking into account the dynamic nature of the real world, where the insight about the current environment is constantly changing. These settings are considered in the improvement of robot-human interaction, where the potential use of these devices is clear, and algorithms are being developed to improve this situation. By the use of the latest advances in artificial intelligence, the human brain behavior is simulated by the so-called neural networks, in such a way that computing system performs as similar as possible as the human behavior. To this end, the system does learn by error which, in an akin way to the human learning, requires a set of previous experiences quite considerable, in order for the algorithm to retain the manners. Applying these technologies to robot-human interaction do narrow the gap. Even so, from a bird's eye, a noticeable time slot used for the application of these technologies is required for the curation of a high-quality dataset, in order to ensure that the learning process is optimal and no wrong actions are retained. Therefore, it is essential to have a development platform in place to ensure these principles are enforced throughout the whole process of creation and optimization of the algorithm. In this work, multiple already-existing handicaps found in pipelines of this computational gauge are exposed, approaching each of them in a independent and simple manner, in such a way that the solutions proposed can be leveraged by the maximum number of workflows. On one side, this project concentrates on reducing the number of bugs introduced by flawed data, as to help the researchers to focus on developing more sophisticated models. On the other side, the shortage of integrated development systems for this kind of pipelines is envisaged, and with special care those using simulated or controlled environments, with the goal of easing the continuous iteration of these pipelines.Thanks to the increasing popularity of drones, the research and development of autonomous capibilities has become easier. However, due to the challenge of integrating multiple technologies, the available software stack to engage this task is restricted. In this thesis, we accent the divergencies among unmanned-aerial-vehicle simulators and propose a platform to allow faster and in-depth prototyping of machine learning algorithms for this drones

    Planning and Control Strategies for Motion and Interaction of the Humanoid Robot COMAN+

    Get PDF
    Despite the majority of robotic platforms are still confined in controlled environments such as factories, thanks to the ever-increasing level of autonomy and the progress on human-robot interaction, robots are starting to be employed for different operations, expanding their focus from uniquely industrial to more diversified scenarios. Humanoid research seeks to obtain the versatility and dexterity of robots capable of mimicking human motion in any environment. With the aim of operating side-to-side with humans, they should be able to carry out complex tasks without posing a threat during operations. In this regard, locomotion, physical interaction with the environment and safety are three essential skills to develop for a biped. Concerning the higher behavioural level of a humanoid, this thesis addresses both ad-hoc movements generated for specific physical interaction tasks and cyclic movements for locomotion. While belonging to the same category and sharing some of the theoretical obstacles, these actions require different approaches: a general high-level task is composed of specific movements that depend on the environment and the nature of the task itself, while regular locomotion involves the generation of periodic trajectories of the limbs. Separate planning and control architectures targeting these aspects of biped motion are designed and developed both from a theoretical and a practical standpoint, demonstrating their efficacy on the new humanoid robot COMAN+, built at Istituto Italiano di Tecnologia. The problem of interaction has been tackled by mimicking the intrinsic elasticity of human muscles, integrating active compliant controllers. However, while state-of-the-art robots may be endowed with compliant architectures, not many can withstand potential system failures that could compromise the safety of a human interacting with the robot. This thesis proposes an implementation of such low-level controller that guarantees a fail-safe behaviour, removing the threat that a humanoid robot could pose if a system failure occurred

    Event Driven Tactile Sensors for Artificial Devices

    Get PDF
    Present-day robots are, to some extent, able to deal with high complexity and variability of the real-world environment. Their cognitive capabilities can be further enhanced, if they physically interact and explore the real-world objects. For this, the need for efficient tactile sensors is growing day after day in such a way are becoming more and more part of daily life devices especially in robotic applications for manipulation and safe interaction with the environment. In this thesis, we highlight the importance of touch sensing in humans and robots. Inspired by the biological systems, in the the first part, we merge between neuromorphic engineering and CMOS technology where the former is a eld of science that replicates what is biologically (neurons of the nervous system) inside humans into the circuit level. We explain the operation and then characterize different sensor circuits through simulation and experiment to propose finally new prototypes based on the achieved results. In the second part, we present a machine learning technique for detecting the direction and orientation of a sliding tip over a complete skin patch of the iCub robot. Through learning and online testing, the algorithm classies different trajectories across the skin patch. Through this part, we show the results of the considered algorithm with a future perspective to extend the work

    Path Driven Dual Arm Mobile Co-Manipulation Architecture for Large Part Manipulation in Industrial Environments

    Get PDF
    Collaborative part transportation is an interesting application as many industrial sectors require moving large parts among different areas of the workshops, using a large amount of the workforce on this tasks. Even so, the implementation of such kinds of robotic solutions raises technical challenges like force-based control or robot-to-human feedback. This paper presents a path-driven mobile co-manipulation architecture, proposing an algorithm that deals with all the steps of collaborative part transportation. Starting from the generation of force-based twist commands, continuing with the path management for the definition of safe and collaborative areas, and finishing with the feedback provided to the system users, the proposed approach allows creating collaborative lanes for the conveyance of large components. The implemented solution and performed tests show the suitability of the proposed architecture, allowing the creation of a functional robotic system able to assist operators transporting large parts on workshops.This work has received funding from the European Union Horizon 2020 research and innovation programme as part of the project SHERLOCK under grant agreement No 820689

    Advanced Knowledge Application in Practice

    Get PDF
    The integration and interdependency of the world economy leads towards the creation of a global market that offers more opportunities, but is also more complex and competitive than ever before. Therefore widespread research activity is necessary if one is to remain successful on the market. This book is the result of research and development activities from a number of researchers worldwide, covering concrete fields of research
    • …
    corecore