39 research outputs found

    FPGA based reconfigurable body area network using Nios II and uClinux

    Get PDF
    This research is focused on identifying an appropriate design for a reconfigurable Body Area Network (BAN). In order to investigate the benefits and drawbacks of the proposed design, a BAN system prototype was built. This system consists of two distinct node types: a slave node and a master node. These nodes communicate using ZigBee radio transceivers. The microcontroller-based slave node acquires sensor data and transmits digitized samples to the master node. The master node is FPGA-based and runs uClinux on a soft-core microcontroller. The purpose of the master node is to receive, process and store digitized sensor data. In order to verify the operation of the BAN system prototype and demonstrate reconfigurability, a specific application was required. Pattern recognition in electrocardiogram (ECG) data was the application used in this work and the MIT-BIH Arrhythmia Database was used as the known data source for verification. A custom test platform was designed and built for the purpose of injecting data from the MIT-BIH Arrhythmia Database into the BAN system. The BAN system designed and built in this work demonstrates the ability to record raw ECG data, detect R-peaks, calculate and record R-R intervals, detect premature ventricular and atrial contractions. As this thesis will identify, many aspects of this BAN system were designed to be highly reconfigurable allowing it to be used for a wide range of BAN applications, in addition to pattern recognition of ECG data

    Incorporating Biobehavioral Architecture into Car-Following Models: A Driving Simulator Study

    Get PDF
    Mathematical models of car-following, lane changing, and gap acceptance are mostly descriptive in nature and lack decision making or error tolerance. Including additional driver-related information with respect to behavior and cognitive characteristics would account for these lacking parameters and incorporate a human aspect to these models. Car-following, particularly in relation to the Intelligent Driver Model (IDM), was the primary component of this research. The major objectives of this research were to investigate how psychophysiological constructs can be modeled to replicate car-following behavior, and to correlate subjective measures of behavior with actual car-following behavior. This dissertation presents a thorough literature review into car-following models and existing driving and biobehavioral relationships that can be capitalized to improve the calibration and predicting capabilities of these models. A framework was theorized to utilize the task-capability interface to incorporate biobehavioral parameters such as cognitive workload, situation awareness, and level of activation in order to better predict changes in driving performance. Ninety drivers were recruited to validate the framework by participating in virtual scenarios within a driving simulator environment. The scenarios were created to capture all the necessary parameters by varying the situation complexity of individual tasks. A biobehavioral extension to the IDM was developed to easily calibrate predicted and observed values by grouping individual driver performance and behavioral traits. The model was validated and found to be an effective way of utilizing behavioral and performance variables to efficiently predict car-following behavior

    Non-invasive wearable sensing system for sleep disorder monitoring

    Get PDF
    Dissertação de mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2017This Master Thesis introduced a proposal of a remote sensory system for the detection of sleep disorders in geriatric outpatients. Although the most accurate solution would be an in-depth study in a sleep clinic, it is not a realistic environment for the elderly. The objective is that the patient stays at home, and without changing their daily routines, the clinicians get objective information in order to make a correct diagnosis of the sleep disorders. Sleep disorders are often classified as medical disorders corresponding to modifications on the sleep patterns and the amount of these modifications increase with age. However, regularly, these illnesses are undiagnosed, since is hard for the patients to explain the symptoms to the doctor. To achieve the proposed objective, we studied the polysomnography bio-signals that could be used to accurate reflect the sleep disorders occurrences. We designed a Body Sensor Network (BSN) to be divided into both movement assessment (Accelerometer and Gyroscope) and biomedical signals (EMG, ECG, PPG, GSR) evaluation. These signals, reflecting both breathing and cardiac activities, are processed by a specifically developed algorithm. The reduction of the number of sensors was also envisaged, and it was decided to use 3 biomedical sensors instead of the minimum of 22 sensors used by polysomnography. Thus, to offer better visualization of the recorded signals a software interface was developed to include the processing and visualization of the signals. To identify the sleep stage and apnea state, we settled an algorithm that processes both ECG and EMG. To validate this algorithm, it was decided to use two sources of data: PhysioNet data base containing ECG and EMG signals and data recorded by our BSN on volunteers. With this work, we were able to build a BSN capable of detecting a set of sleep disorders, without using any invasive method. The network provides reliable data, and using the developed interface, it helps elderly health providers to carry out an in-depth analysis of the information and to better identify sleep disorders.Este trabalho introduz uma proposta de uma monitorização remota de saúde para a deteção de desordens de sono em pacientes ambulatórios geriátricos. As desordens de sono são as condições que afetam a habilidade de dormir bem regularmente. Podem ser causadas por um problema de saúde ou por elevado stress. Embora a solução mais precisa seja um estudo aprofundado numa clínica de sono, este não corresponde a um cenário realista para os idosos, corrompendo os dados registados devido ao stress associado ao ambiente desconhecido. De modo a que o paciente não saia de sua casa e não altere as suas rotinas diárias, o sistema desenvolvido tem um uso simples que pode ser utilizado num ambiente amigável e seguro para o paciente. Isto irá providenciar informação objetiva aos clínicos, de modo a diagnosticar as desordens de sono de maneira correta, já que os pacientes por vezes têm dificuldade em explicar os sintomas aos médicos durante a consulta, o que vai provocar um elevado número de casos subdiagnosticados. O primeiro passo a tomar, de modo a criar um sistema de monitoramento remoto doméstico, é definir quais são os sinais a monitorizar. O primeiro sinal definido para ser alvo de monitoramento foi o Eletrocardiograma (ECG). A razão deve-se ao fato de este sinal já ter sido empregado em variadíssimos estudos relativos ao sono, em que os pesquisadores utilizam a Heart Rate Variability (HRV) para a deteção de apneias de sono (tanto no domínio do tempo ou frequência) e outros transtornos de sono. Neste trabalho vamos tentar identificar episódios de acoplamento cardiorrespiratório, ao analisar a HRV. O segundo sinal a ser eleito foi o Eletromiograma (EMG) proveniente do queixo. Este sinal foi escolhido, devido à correlação que tinha com o sinal ECG na presença de episódios de apneia obstrutivos. Este fenómeno deve-se à dificuldade que o paciente tem ao inspirar, pois como tem as vias respiratórias obstruídas, o ar não chega aos pulmões. Isto vai levar a um esforço extra por parte do paciente, que se vai traduzir num aumento de amplitude do sinal. Esta variação vai novamente aparecer dez ou mais segundos depois, quando o ar voltar a entrar nos pulmões, e o paciente voltar a respirar normalmente. Para além de estes dois sinais biomédicos, também vamos monitorizar o sinal Fotopletismografia (PPG) e a resposta galvânica da pele (GSR). O PPG é usado para detetar as diferenças no volume do sangue, de modo a avaliar a circulação periférica enquanto que a resposta galvânica mede a condutividade da pele. Ambos os sinais apresentaram características distintivas na presença de apneia, e podem ser alvo de estudo detalhado em trabalhos futuros. Em termos de sinal de movimento, foram gravados e analisados os sinais do acelerómetros e giroscópios em dois locais distintos: na região do diafragma, de modo a obter dados que se possam correlacionar com doenças respiratórias relacionadas com o sono, e na coxa esquerda. Esta informação não vai ser utilizada minuciosamente no presente trabalho, mas no futuro irá ser empregada de modo a ser correlacionada com distúrbios do movimento do sono. Identificados os sinais a ser supervisionados e a informação proveniente, vai ser desenvolvido um algoritmo para diferenciar o estado de apneia obstrutiva (OSA) e o estado de sono normal (NS). No algoritmo proposto foi processado o sinal ECG de modo a obter a HRV. O nosso algoritmo foi baseado no domínio da frequência, dado que a literatura aponta como a forma mais adequada para revelar diferenças de episódios de apneia obstrutiva e sono normal [1]. Ao processar a HRV, obtemos as suas características, e é efetuada a densidade espetral de potência (PSD) na Very Low Frequency (VLF) e High Frequency (HF). Escolhemos estas duas bandas de frequência, porque está provado que são as melhores na distinção entre o estado de sono e o estado de apneia. No caso da VLF, o máximo em OSA é mais proeminente que no NS. Já o inverso ocorre na banda de HF, em que no estado NS, existe um pico que surge devido à arritmia do seio respiratório (RSA) e que normalmente tem o aspeto de uma curva gaussiana. Reconhecidas as diferenças entre os dois estados, são definidos thresholds para estado de apneia e estado de sono normal. Estes limites serão verificado por uma Moving Average Window com um tamanho de 60 segundos. No começo, o algoritmo vai desprezar os primeiro 60 segundos. Após este período, a janela média móvel vai fazer a PSD para HF e VLF e verifica se para ambos os resultados, o threshold é cumprido. Caso os limites sejam atingidos, a janela desloca-se 10 segundos, e aplica os mesmo método, durante os próximos 50 segundos, de modo a termos os valores para 60 segundos. Após a recolha total de dados, é feita a média dos 60 segundos para as duas bandas de frequência. Se ambas atingirem o threshold definido, o intervalo é definido como OSA. Para testar este algoritmo foram utilizadas duas bases de dados: a PhysioNet, que tem informação clinicamente anotada por médicos e é utilizada em diversos trabalhos nesta área, e também iremos testar na informação recolhida pela nossa rede de sensores. Relativamente à base de dados da PhysioNet, os resultados obtidos foram bastante satisfatórios, com precisão a 87,8%, especificidade a 89,9% e sensibilidade a 86,3%. No caso dos sinais recolhidos pela rede de sensores proposta, foi escolhido um dos voluntários que já tinha sido previamente diagnósticos com apneia severa de modo a aumentar as nossas chances de encontrar episódios de apneia. Não foi possível definir valores para a precisão, especificidade e sensibilidade já que não temos um sinal de referência com anotações médicas, para compararmos com os resultados obtidos pelo nosso algoritmo. Em alguns intervalos que foram identificados como episódios de apneia, os sinais recolhidos foram verificados no domínio do tempo, e foram encontradas correlações entre o sinal HRV, EMG, acelerómetro e giroscópio, em que estes dois últimos são sinais obtidos oriundos do peito. De modo a aumentar a precisão do sistema proposto, o próximo passo vai ser incluir o sinal EMG no nosso sistema. Como foi observado em literatura previamente lida, é possível usar a PSD no sinal EMG, para diferenciar entre indivíduos com determinada patologia e indivíduos saudáveis [2]. Por isso aplicamos a PSD no sinal EMG, nos dois diferentes estados (NS e OSA) e obtivemos curvas semelhantes para ambos os estados, obtidas no sinal ECG. Tal fato deve-se provavelmente à componente respiratória que vai influenciar o sinal muscular obtido do queixo. De modo a que os sinais sejam facilmente visualizados, também foi desenvolvida uma interface gráfica, na aplicação do Matlab™ GUIDE, que irá dar aos utilizadores acesso aos sinais gravados pela nossa rede de sensores, e possivelmente a aplicação do algoritmo proposto, para vermos em que pontos os episódios de apneia ocorreram

    P and T wave analysis in ECG signals using Bayesian methods

    Get PDF
    Cette thèse a pour objet l’étude de méthodes Bayésiennes pour l’analyse des ondes P et T des signaux ECG. Différents modèles statistiques et des méthodes Bayésiennes associées sont proposés afin de réaliser la détection des ondes P et T et leur caractérisation (détermination du sommet et des limites des ondes ainsi que l’estimation des formes d’onde). Ces modèles prennent en compte des lois a priori pour les paramètres inconnus (les positions des ondes, les amplitudes et les coefficients de ces formes d'onde) associés aux signaux ECG. Ces lois a priori sont ensuite combinées avec la vraisemblance des données observées pour fournir les lois a posteriori des paramètres inconnus. En raison de la complexité des lois a posteriori obtenues, des méthodes de Monte Carlo par Chaînes de Markov sont proposées pour générer des échantillons distribués asymptotiquement suivant les lois d’intérêt. Ces échantillons sont ensuite utilisés pour approcher les estimateurs Bayésiens classiques (MAP ou MMSE). D'autre part, pour profiter de la nature séquentielle du signal ECG, un modèle dynamique est proposé. Une méthode d'inférence Bayésienne similaire à celle développée précédemment et des méthodes de Monte Carlo séquentielles (SMC) sont ensuite étudiées pour ce modèle dynamique. Dans la dernière partie de ce travail, deux modèles Bayésiens introduits dans cette thèse sont adaptés pour répondre à un sujet de recherche clinique spécifique appelé détection de l'alternance des ondes T. Une des approches proposées a servi comme outil d'analyse dans un projet en collaboration avec St. Jude Medical, Inc et l'hôpital de Rangueil à Toulouse, qui vise à évaluer prospectivement la faisabilité de la détection des alternances des ondes T dans les signaux intracardiaques. ABSTRACT : This thesis studies Bayesian estimation/detection algorithms for P and T wave analysis in ECG signals. In this work, different statistical models and associated Bayesian methods are proposed to solve simultaneously the P and T wave delineation task (determination of the positions of the peaks and boundaries of the individual waves) and the waveform-estimation problem. These models take into account appropriate prior distributions for the unknown parameters (wave locations and amplitudes, and waveform coefficients). These prior distributions are combined with the likelihood of the observed data to provide the posterior distribution of the unknown parameters. Due to the complexity of the resulting posterior distributions, Markov chain Monte Carlo algorithms are proposed for (sample-based) detection/estimation. On the other hand, to take full advantage of the sequential nature of the ECG, a dynamic model is proposed under a similar Bayesian framework. Sequential Monte Carlo methods (SMC) are also considered for delineation and waveform estimation. In the last part of the thesis, two Bayesian models introduced in this thesis are adapted to address a specific clinical research problem referred to as T wave alternans (TWA) detection. One of the proposed approaches has served as an efficient analysis tool in the Endocardial T wave Alternans Study (ETWAS) project in collaboration with St. Jude Medical, Inc and Toulouse Rangueil Hospital. This project was devoted to prospectively assess the feasibility of TWA detection in repolarisation on EGM stored in ICD memories

    Analyse des ondes P et T des signaux ECG à l'aide de méthodes Bayésienne

    Get PDF
    Cette thèse a pour objet l étude de méthodes Bayésiennes pour l analyse des ondes P et T des signaux ECG. Différents modèles statistiques et des méthodes Bayésiennes associées sont proposés afin de réaliser la détection des ondes P et T et leur caractérisation (détermination du sommet et des limites des ondes ainsi que l estimation des formes d onde). Ces modèles prennent en compte des lois a priori pour les paramètres inconnus (les positions des ondes, les amplitudes et les coefficients de ces formes d'onde) associés aux signaux ECG. Ces lois a priori sont ensuite combinées avec la vraisemblance des données observées pour fournir les lois a posteriori des paramètres inconnus. En raison de la complexité des lois a posteriori obtenues, des méthodes de Monte Carlo par Chaînes de Markov sont proposées pour générer des échantillons distribués asymptotiquement suivant les lois d intérêt. Ces échantillons sont ensuite utilisés pour approcher les estimateurs Bayésiens classiques (MAP ou MMSE). D'autre part, pour profiter de la nature séquentielle du signal ECG, un modèle dynamique est proposé. Une méthode d'inférence Bayésienne similaire à celle développée précédemment et des méthodes de Monte Carlo séquentielles (SMC) sont ensuite étudiées pour ce modèle dynamique. Dans la dernière partie de ce travail, deux modèles Bayésiens introduits dans cette thèse sont adaptés pour répondre à un sujet de recherche clinique spécifique appelé détection de l'alternance des ondes T. Une des approches proposées a servi comme outil d'analyse dans un projet en collaboration avec St. Jude Medical, Inc et l'hôpital de Rangueil à Toulouse, qui vise à évaluer prospectivement la faisabilité de la détection des alternances des ondes T dans les signaux intracardiaques.This thesis studies Bayesian estimation/detection algorithms for P and T wave analysis in ECG signals. In this work, different statistical models and associated Bayesian methods are proposed to solve simultaneously the P and T wave delineation task (determination of the positions of the peaks and boundaries of the individual waves) and the waveform-estimation problem. These models take into account appropriate prior distributions for the unknown parameters (wave locations and amplitudes, and waveform coefficients). These prior distributions are combined with the likelihood of the observed data to provide the posterior distribution of the unknown parameters. Due to the complexity of the resulting posterior distributions, Markov chain Monte Carlo algorithms are proposed for (sample-based) detection/estimation. On the other hand, to take full advantage of the sequential nature of the ECG, a dynamic model is proposed under a similar Bayesian framework. Sequential Monte Carlo methods (SMC) are also considered for delineation and waveform estimation. In the last part of the thesis, two Bayesian models introduced in this thesis are adapted to address a specific clinical research problem referred to as T wave alternans (TWA) detection. One of the proposed approaches has served as an efficient analysis tool in the Endocardial T wave Alternans Study (ETWAS) project in collaboration with St. Jude Medical, Inc and Toulouse Rangueil Hospital. This project was devoted to prospectively assess the feasibility of TWA detection in repolarisation on EGM stored in ICD memories.TOULOUSE-INP (315552154) / SudocSudocFranceF

    Simultaneous ambulatory cardial and oesophageal monitoring

    Get PDF
    A method for recording and analyzing patient signals is described. The electrocardiogram and the pH in the lower oesophagus are simultaneously monitored over a 24 hour period. Signals are recorded onto cassette tape for later analysis. The pH record is analyzed for reflux episodes which are correlated with patient symptoms. The corresponding ECG episodes are checked for ischemia which appears as depression of the ST segment

    Extracting ECG-based cardiac information from the upper arm

    Get PDF
    Cardiovascular disease (CVD) is the global number one cause of death. Therefore, there is an acute need for constantly monitoring cardiac conditions and/or cardiac monitoring for extended periods. The current clinical Electrocardiogram (ECG) recording systems require precise placement of electrodes on the patient’s body, often performed by trained medical professionals. These systems also have long wires that require repeated disinfection and can be easily tangled and interfered with clothing and garment. These limitations have severely restricted the possible application scenarios of ECG systems. To overcome these limitations, there is a need for wearable ECG devices with minimal wires to detect possible cardiac abnormalities with minimal intervention from healthcare professionals. Previous research on this topic has focused on extracting cardiac information from the body surface by investigating various electrode placements and developing ECG processing algorithms. Building on these studies, it is possible to develop devices and algorithms that can extract ECG-related information without the need for precise electrode placements on the body's surface. The present thesis aims to extract ECG-based cardiac information using signals recorded from the upper arm. Far-field ECG is prone to contamination by artifacts such as Electromyogram (EMG), which greatly reduces its clinical value. The current study examines how various state-of-the-art heartbeat detection algorithms perform in four levels of simulated EMG artifacts. The simulated EMG was added to Lead II from two different datasets: the MIT-BIH arrhythmia dataset (Dataset 1) and data we collected from 20 healthy participants (Dataset 2). Results show that Stationary Wavelet Transform (SWT) provided the most robust features against EMG intensity level increment among various algorithms. The next step involved recording bio-potential signals using a high-density bio-potential amplification system attached to the upper arm. The system used three high-density electrodes, each with 64 channels, in addition to the standard Lead II. Twenty participants, reported healthy, were asked to perform two tasks: Rest and Elbow Flexion (EF): holding three weights (C1: 1.2 kg, C2: 2.2 kg, and C3: 3.6 kg). The tasks were repeated 2 and 3 times, respectively. Firstly, I identified optimal electrode locations on the upper arm for each task. I then generated a synthesized ECG using the selected electrodes with generalized weights over subjects and trials. Considering the robustness of SWT to EMG intensity level increment, I next focused on optimizing SWT by addressing two of its drawbacks: introducing phase shift and the requirement of a pre-defined mother wavelet. Regarding the first drawback, zero-phase wavelet (Zephlet) was implemented to replace SWT filters with zero-phase filters for the matter of feature extraction from the synthesized ECG. Next, I incorporated the synchronized extracted features with a Multiagent Detection Scheme (MDS) for the means of heartbeat detection. The F1-score for the heartbeat detection was 0.94 ± 0.16, 0.86 ± 0.22, 0.79 ± 0.26, and 0.67 ± 0.31 for Rest and EF with three different levels of muscle contraction (C1 to C3), respectively. Changing the acceptable distance between the detected and actual heartbeats from 50 ms to 20 ms, the F1-score changed to 0.81 ± 0.20, 0.66 ± 0.26, 0.57 ± 0.26, and 0.44 ± 0.26 for Rest and C1 to C3, respectively. Regarding the second drawback, Lattice parametrization was used to optimize the mother wavelet for the means of PQRST delineation. The mother wavelet was generalized over subjects, trials, and tasks. The Pearson’s Correlation Coefficient (CC) between the averaged delineated PQRST from analyzing feature and the averaged PQRST from Lead II using this generalized mother wavelet was 0.88 ± 0.05, 0.85 ± 0.08, 0.83± 0.11, and 0.81 ± 0.12 for Rest and C1-C3, respectively. This thesis makes several contributions to the current literature. It introduces locations on the upper arm that can be used to place sensors in a wearable to capture cardiac activity with robustness across intra-subject, inter-subject and inter-contraction variabilities. It also identifies a robust method against noise increment for heartbeat detection. Zephlet was implemented for the first time that can replace SWT in many applications in which there is a need for synchrony with respect to the original signal or among components. And finally, this thesis introduces a generalized mother wavelet that can be used to extract PQRST and enhance SNR in many applications, such as ECG waveform extraction, arrhythmia detection, and denoising
    corecore