25,085 research outputs found

    On the Implementation of the Probabilistic Logic Programming Language ProbLog

    Get PDF
    The past few years have seen a surge of interest in the field of probabilistic logic learning and statistical relational learning. In this endeavor, many probabilistic logics have been developed. ProbLog is a recent probabilistic extension of Prolog motivated by the mining of large biological networks. In ProbLog, facts can be labeled with probabilities. These facts are treated as mutually independent random variables that indicate whether these facts belong to a randomly sampled program. Different kinds of queries can be posed to ProbLog programs. We introduce algorithms that allow the efficient execution of these queries, discuss their implementation on top of the YAP-Prolog system, and evaluate their performance in the context of large networks of biological entities.Comment: 28 pages; To appear in Theory and Practice of Logic Programming (TPLP

    The heuristic conception of inference to the best explanation

    Get PDF
    An influential suggestion about the relationship between Bayesianism and inference to the best explanation holds that IBE functions as a heuristic to approximate Bayesian reasoning. While this view promises to unify Bayesianism and IBE in a very attractive manner, important elements of the view have not yet been spelled out in detail. I present and argue for a heuristic conception of IBE on which IBE serves primarily to locate the most probable available explanatory hypothesis to serve as a working hypothesis in an agent’s further investigations. Along the way, I criticize what I consider to be an overly ambitious conception of the heuristic role of IBE, according to which IBE serves as a guide to absolute probability values. My own conception, by contrast, requires only that IBE can function as a guide to the comparative probability values of available hypotheses. This is shown to be a much more realistic role for IBE given the nature and limitations of the explanatory considerations with which IBE operates

    Inference and Evaluation of the Multinomial Mixture Model for Text Clustering

    Full text link
    In this article, we investigate the use of a probabilistic model for unsupervised clustering in text collections. Unsupervised clustering has become a basic module for many intelligent text processing applications, such as information retrieval, text classification or information extraction. The model considered in this contribution consists of a mixture of multinomial distributions over the word counts, each component corresponding to a different theme. We present and contrast various estimation procedures, which apply both in supervised and unsupervised contexts. In supervised learning, this work suggests a criterion for evaluating the posterior odds of new documents which is more statistically sound than the "naive Bayes" approach. In an unsupervised context, we propose measures to set up a systematic evaluation framework and start with examining the Expectation-Maximization (EM) algorithm as the basic tool for inference. We discuss the importance of initialization and the influence of other features such as the smoothing strategy or the size of the vocabulary, thereby illustrating the difficulties incurred by the high dimensionality of the parameter space. We also propose a heuristic algorithm based on iterative EM with vocabulary reduction to solve this problem. Using the fact that the latent variables can be analytically integrated out, we finally show that Gibbs sampling algorithm is tractable and compares favorably to the basic expectation maximization approach
    • 

    corecore