11,214 research outputs found

    Quasi Spin Images

    Get PDF
    The increasing adoption of 3D capturing equipment, now also found in mobile devices, means that 3D content is increasingly prevalent. Common operations on such data, including 3D object recognition and retrieval, are based on the measurement of similarity between 3D objects. A common way to measure object similarity is through local shape descriptors, which aim to do part-to-part matching by describing portions of an object's shape. The Spin Image is one of the local descriptors most suitable for use in scenes with high degrees of clutter and occlusion but its practical use has been hampered by high computational demands. The rise in processing power of the GPU represents an opportunity to significantly improve the generation and comparison performance of descriptors, such as the Spin Image, thereby increasing the practical applicability of methods making use of it. In this paper we introduce a GPU-based Quasi Spin Image (QSI) algorithm, a variation of the original Spin Image, and show that a speedup of an order of magnitude relative to a reference CPU implementation can be achieved in terms of the image generation rate. In addition, the QSI is noise free, can be computed consistently, and a preliminary evaluation shows it correlates well relative to the original Spin Image

    Salient Local 3D Features for 3D Shape Retrieval

    Full text link
    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.Comment: Three-Dimensional Imaging, Interaction, and Measurement. Edited by Beraldin, J. Angelo; Cheok, Geraldine S.; McCarthy, Michael B.; Neuschaefer-Rube, Ulrich; Baskurt, Atilla M.; McDowall, Ian E.; Dolinsky, Margaret. Proceedings of the SPIE, Volume 7864, pp. 78640S-78640S-8 (2011). Conference Location: San Francisco Airport, California, USA ISBN: 9780819484017 Date: 10 March 201

    From 3D Point Clouds to Pose-Normalised Depth Maps

    Get PDF
    We consider the problem of generating either pairwise-aligned or pose-normalised depth maps from noisy 3D point clouds in a relatively unrestricted poses. Our system is deployed in a 3D face alignment application and consists of the following four stages: (i) data filtering, (ii) nose tip identification and sub-vertex localisation, (iii) computation of the (relative) face orientation, (iv) generation of either a pose aligned or a pose normalised depth map. We generate an implicit radial basis function (RBF) model of the facial surface and this is employed within all four stages of the process. For example, in stage (ii), construction of novel invariant features is based on sampling this RBF over a set of concentric spheres to give a spherically-sampled RBF (SSR) shape histogram. In stage (iii), a second novel descriptor, called an isoradius contour curvature signal, is defined, which allows rotational alignment to be determined using a simple process of 1D correlation. We test our system on both the University of York (UoY) 3D face dataset and the Face Recognition Grand Challenge (FRGC) 3D data. For the more challenging UoY data, our SSR descriptors significantly outperform three variants of spin images, successfully identifying nose vertices at a rate of 99.6%. Nose localisation performance on the higher quality FRGC data, which has only small pose variations, is 99.9%. Our best system successfully normalises the pose of 3D faces at rates of 99.1% (UoY data) and 99.6% (FRGC data)

    Deep Shape Matching

    Full text link
    We cast shape matching as metric learning with convolutional networks. We break the end-to-end process of image representation into two parts. Firstly, well established efficient methods are chosen to turn the images into edge maps. Secondly, the network is trained with edge maps of landmark images, which are automatically obtained by a structure-from-motion pipeline. The learned representation is evaluated on a range of different tasks, providing improvements on challenging cases of domain generalization, generic sketch-based image retrieval or its fine-grained counterpart. In contrast to other methods that learn a different model per task, object category, or domain, we use the same network throughout all our experiments, achieving state-of-the-art results in multiple benchmarks.Comment: ECCV 201
    corecore