2,932 research outputs found

    Parallel and Distributed Immersive Real-Time Simulation of Large-Scale Networks

    Get PDF

    Master/worker parallel discrete event simulation

    Get PDF
    The execution of parallel discrete event simulation across metacomputing infrastructures is examined. A master/worker architecture for parallel discrete event simulation is proposed providing robust executions under a dynamic set of services with system-level support for fault tolerance, semi-automated client-directed load balancing, portability across heterogeneous machines, and the ability to run codes on idle or time-sharing clients without significant interaction by users. Research questions and challenges associated with issues and limitations with the work distribution paradigm, targeted computational domain, performance metrics, and the intended class of applications to be used in this context are analyzed and discussed. A portable web services approach to master/worker parallel discrete event simulation is proposed and evaluated with subsequent optimizations to increase the efficiency of large-scale simulation execution through distributed master service design and intrinsic overhead reduction. New techniques for addressing challenges associated with optimistic parallel discrete event simulation across metacomputing such as rollbacks and message unsending with an inherently different computation paradigm utilizing master services and time windows are proposed and examined. Results indicate that a master/worker approach utilizing loosely coupled resources is a viable means for high throughput parallel discrete event simulation by enhancing existing computational capacity or providing alternate execution capability for less time-critical codes.Ph.D.Committee Chair: Fujimoto, Richard; Committee Member: Bader, David; Committee Member: Perumalla, Kalyan; Committee Member: Riley, George; Committee Member: Vuduc, Richar

    A study of simulation performance based on event orderings

    Get PDF
    Master'sMASTER OF SCIENC

    Toward Distributed At-scale Hybrid Network Test with Emulation and Simulation Symbiosis

    Get PDF
    In the past decade or so, significant advances were made in the field of Future Internet Architecture (FIA) design. Undoubtedly, the size of Future Internet will increase tremendously, and so will the complexity of its users’ behaviors. This advancement means most of future Internet applications and services can only achieve and demonstrate full potential on a large-scale basis. The development of network testbeds that can validate key design decisions and expose operational issues at scale is essential to FIA research. In conjunction with the development and advancement of FIA, cyber-infrastructure testbeds have also achieved remarkable progress. For meaningful network studies, it is indispensable to utilize cyber-infrastructure testbeds appropriately in order to obtain accurate experiment results. That said, existing current network experimentation is intrinsically deficient. The existing testbeds do not offer scalability, flexibility, and realism at the same time. This dissertation aims to construct a hybrid system of conducting at-scale network studies and experiments by exploiting the distributed computing ability of current testbeds. First, this work presents a synchronization of parallel discrete event simulation that offers the simulation with transparent scalability and performance on various high-end computing platforms. The parallel simulator that we implement is configured so that it can self-adapt for the performance while running on supercomputers with disparate architectures. The simulator could be used to handle models of different sizes, varying modeling details, and different complexity levels. Second, this works addresses the issue of researching network design and implementation realistically at scale, through the use of distributed cyber-infrastructure testbeds. An existing symbiotic approach is applied to integrate emulation with simulation so that they can overcome the limitations of physical setup. The symbiotic method is used to improve the capabilities of a specific emulator, Mininet. In this case, Mininet can be used to run applications directly on the virtual machines and software switches, with network connectivity represented by detailed simulation at scale. We also propose a method for using the symbiotic approach to coordinate separate Mininet instances, each representing a different set of the overlapping network flows. This approach provides a significant improvement to the scalability of the network experiments

    Economic-based Distributed Resource Management and Scheduling for Grid Computing

    Full text link
    Computational Grids, emerging as an infrastructure for next generation computing, enable the sharing, selection, and aggregation of geographically distributed resources for solving large-scale problems in science, engineering, and commerce. As the resources in the Grid are heterogeneous and geographically distributed with varying availability and a variety of usage and cost policies for diverse users at different times and, priorities as well as goals that vary with time. The management of resources and application scheduling in such a large and distributed environment is a complex task. This thesis proposes a distributed computational economy as an effective metaphor for the management of resources and application scheduling. It proposes an architectural framework that supports resource trading and quality of services based scheduling. It enables the regulation of supply and demand for resources and provides an incentive for resource owners for participating in the Grid and motives the users to trade-off between the deadline, budget, and the required level of quality of service. The thesis demonstrates the capability of economic-based systems for peer-to-peer distributed computing by developing users' quality-of-service requirements driven scheduling strategies and algorithms. It demonstrates their effectiveness by performing scheduling experiments on the World-Wide Grid for solving parameter sweep applications

    Modelling large scale enterprises : A distributed simulation approach.

    Get PDF
    Distributed simulation provides an alternative solution when today's highly complicated systems including manufacturing are to be simulated. Complexities involved in implementation, the need for more expertise, high development cost and long implementation time etc. along with a lack of guidelines for developing distributed simulation, and the complexity of tools and techniques used to implement schemes, resulted in the lack of acceptance for distributed simulation among the general simulation community. In order to address some of these issues, a new approach is proposed for modelling and simulating large scale enterprises using distributed simulation. The proposed approach which includes a comprehensive methodology for distributed enterprise simulation, developed by combining activities required for traditional sequential simulation with additional activities required for distributed simulation. The thesis elaborates the additional activities required for distributed simulation in different chapters with simplified approaches for carrying out these activities. These include an approach to decide the appropriate simulation strategy (SimSS process), a simplified approach to modelling and model partitioning, a synchronization mechanism that approximately synchronizes the distributed enterprise simulation and an approach for developing distributed simulation using tools and technologies which are popular, well accepted and also cost effective. The differences between the traditional distributed simulation approaches and the proposed methodology include: partitioning of the conceptual model into logical processes before transforming them into computer simulation models, use of commercial simulation software to implement the distributed simulation, and use of cost effective and popular middleware and programming languages. Illustration of the proposed approaches focuses on distributed manufacturing applications

    Design and evaluation of the rollback chip: special purpose hardware for time warp

    Get PDF
    technical reportThe Time Warp mechanism offers an elegant approach to attacking difficult clock synchronization problems that arise in applications such as parallel discrete event simulation. However, because Time Warp relies on a lookahead and rollback mechanism to achieve widespread exploitation of parallelism, the state of each process must periodically be saved. Existing approaches to implementing state saving and rollback are not appropriate for large Time Warp programs. We propose a component called the rollback chip (RBC) to efficiently implement these functions. Such a component could be used in a programmable, special purpose parallel discrete event simulation engine based on Time Warp. The algorithms implemented by the rollback chip are described, as well as mechanisms that allow efficient implementation. Results of simulation studies are presented that show that the rollback chip can virtually eliminate the state saving and rollback overheads that plague current software implementations of Time Warp. Index terms ? state saving, rollback, Time Warp, parallel discrete event simulation, VLSI component, special purpose computers

    Parallelizing Timed Petri Net simulations

    Get PDF
    The possibility of using parallel processing to accelerate the simulation of Timed Petri Nets (TPN's) was studied. It was recognized that complex system development tools often transform system descriptions into TPN's or TPN-like models, which are then simulated to obtain information about system behavior. Viewed this way, it was important that the parallelization of TPN's be as automatic as possible, to admit the possibility of the parallelization being embedded in the system design tool. Later years of the grant were devoted to examining the problem of joint performance and reliability analysis, to explore whether both types of analysis could be accomplished within a single framework. In this final report, the results of our studies are summarized. We believe that the problem of parallelizing TPN's automatically for MIMD architectures has been almost completely solved for a large and important class of problems. Our initial investigations into joint performance/reliability analysis are two-fold; it was shown that Monte Carlo simulation, with importance sampling, offers promise of joint analysis in the context of a single tool, and methods for the parallel simulation of general Continuous Time Markov Chains, a model framework within which joint performance/reliability models can be cast, were developed. However, very much more work is needed to determine the scope and generality of these approaches. The results obtained in our two studies, future directions for this type of work, and a list of publications are included

    Submicron Systems Architecture Project : Semiannual Technical Report

    Get PDF
    The Mosaic C is an experimental fine-grain multicomputer based on single-chip nodes. The Mosaic C chip includes 64KB of fast dynamic RAM, processor, packet interface, ROM for bootstrap and self-test, and a two-dimensional selftimed router. The chip architecture provides low-overhead and low-latency handling of message packets, and high memory and network bandwidth. Sixty-four Mosaic chips are packaged by tape-automated bonding (TAB) in an 8 x 8 array on circuit boards that can, in turn, be arrayed in two dimensions to build arbitrarily large machines. These 8 x 8 boards are now in prototype production under a subcontract with Hewlett-Packard. We are planning to construct a 16K-node Mosaic C system from 256 of these boards. The suite of Mosaic C hardware also includes host-interface boards and high-speed communication cables. The hardware developments and activities of the past eight months are described in section 2.1. The programming system that we are developing for the Mosaic C is based on the same message-passing, reactive-process, computational model that we have used with earlier multicomputers, but the model is implemented for the Mosaic in a way that supports finegrain concurrency. A process executes only in response to receiving a message, and may in execution send messages, create new processes, and modify its persistent variables before it either exits or becomes dormant in preparation for receiving another message. These computations are expressed in an object-oriented programming notation, a derivative of C++ called C+-. The computational model and the C+- programming notation are described in section 2.2. The Mosaic C runtime system, which is written in C+-, provides automatic process placement and highly distributed management of system resources. The Mosaic C runtime system is described in section 2.3
    corecore