1,152 research outputs found

    Technical Workshop: Advanced Helicopter Cockpit Design

    Get PDF
    Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 359)

    Get PDF
    This bibliography lists 164 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Helicopter flights with night-vision goggles: Human factors aspects

    Get PDF
    Night-vision goggles (NVGs) and, in particular, the advanced, helmet-mounted Aviators Night-Vision-Imaging System (ANVIS) allows helicopter pilots to perform low-level flight at night. It consists of light intensifier tubes which amplify low-intensity ambient illumination (star and moon light) and an optical system which together produce a bright image of the scene. However, these NVGs do not turn night into day, and, while they may often provide significant advantages over unaided night flight, they may also result in visual fatigue, high workload, and safety hazards. These problems reflect both system limitations and human-factors issues. A brief description of the technical characteristics of NVGs and of human night-vision capabilities is followed by a description and analysis of specific perceptual problems which occur with the use of NVGs in flight. Some of the issues addressed include: limitations imposed by a restricted field of view; problems related to binocular rivalry; the consequences of inappropriate focusing of the eye; the effects of ambient illumination levels and of various types of terrain on image quality; difficulties in distance and slope estimation; effects of dazzling; and visual fatigue and superimposed symbology. These issues are described and analyzed in terms of their possible consequences on helicopter pilot performance. The additional influence of individual differences among pilots is emphasized. Thermal imaging systems (forward looking infrared (FLIR)) are described briefly and compared to light intensifier systems (NVGs). Many of the phenomena which are described are not readily understood. More research is required to better understand the human-factors problems created by the use of NVGs and other night-vision aids, to enhance system design, and to improve training methods and simulation techniques

    Lessons learned from the developmental testing of the EA-6B night vision device integration program

    Get PDF
    During the Kosovo conflict of 1999, EA-6B Prowler fleet commanders experienced the limitations of operating the only Tactical Aviation (TACAIR) platform that was incompatible with Night Vision Imaging Systems (NVIS) and decided as a result that all EA-6B Prowlers must be made NVIS compatible. So keenly did local fleet commanders feel the need for these conversions, they actually considered utilizing Night Vision Goggles without adequately modifying their aircraft. Though this fortunately did not occur, the Department of Defense took unprecedented steps to make EA-6B\u27s NVIS- compatible in the fiscal year 2000 (FY 2000) and these conversions became a priority for the Program Manager of EA-6Bs. In October 1999 the Department of Defense gave the EA-6B Program Manager directions to make all EA-6BS NVIS-compatible and to do so as fast as possible. The entire designing, testing, and fielding of the system would normally have taken three to five years with standard acquisition guidelines. However, this NVIS acquisition program was granted permission to employ the rarely used Abbreviated Acquisition Process in an attempt to field the system in six months. The system was actually fielded in approximately fourteen months. Though, by bureaucratic standards, this constituted a huge success, it proved a failure for fleet aviators. What was promised for six months actually took over a year. This thesis will discuss the programmatic and technical shortfalls experienced in this program. Based on an analysis of this material, the author will make recommendations as to how NVIS modifications to future platforms may be made in a more timely fashion

    Transport airplane flight deck development survey and analysis: Report and recommendations

    Get PDF
    Results of a survey and analysis of research and development work related to improving transport airplane flight deck equipment and aircrew performance is reported. Research and development related to flight deck advancement in general, as well as that concerned directly with terminal area operations, is described and discussed

    Functional requirements for the man-vehicle systems research facility

    Get PDF
    The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included

    Conceptual design study for an advanced cab and visual system, volume 2

    Get PDF
    The performance, design, construction and testing requirements are defined for developing an advanced cab and visual system. The rotorcraft system integration simulator is composed of the advanced cab and visual system and the rotorcraft system motion generator, and is part of an existing simulation facility. User's applications for the simulator include rotorcraft design development, product improvement, threat assessment, and accident investigation

    Avionics requirements for all weather landing of advanced SST's. Volume II - State of the art review of all weather landing system techniques Final report

    Get PDF
    State of art review of all-weather landing techniques and instrumentation for advanced SS

    Aerospace Medicine and Biology: A continuing bibliography, supplement 191

    Get PDF
    A bibliographical list of 182 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1979 is presented

    Pilot Performance and Eye Movement Activity with Varying Levels of Display Integration in a Synthetic Vision Cockpit

    Get PDF
    The primary goal of the present study was to investigate the effects of display integration in a simulated commercial aircraft cockpit equipped with a synthetic vision display. Combinations of display integration level (low/high), display view (synthetic vision view/traditional display), and workload (low/high) were presented to each participant. Sixteen commercial pilots flew multiple approaches under IMC conditions in a moderate fidelity fixed-base part-task simulator. Pilot performance data, visual activity, mental workload, and self-report situation awareness were measured. Congruent with the Proximity Compatibility Principle, the more integrated display facilitated superior performance on integrative tasks (lateral and vertical path maintenance), whereas a less integrated display elicited better focus task performance (airspeed maintenance). The synthetic vision displays facilitated superior path maintenance performance under low workload, but these performance gains were not as evident during high workload. The majority of the eye movement findings identified differences in visual acquisition of the airspeed indicator, the glideslope indicator, the localizer, and the altimeter as a function of display integration level or display view. There were more fixations on the airspeed indicator with the more integrated display layout and during high workload trials. There were also more fixations on the glideslope indicator with the more integrated display layout. However, there were more fixations on the localizer with the less integrated display layout. There were more fixations on the altimeter with the more integrated display and with the traditional view. Only a few eye movement differences were produced by the synthetic vision displays; pilots looked at the glideslope indicator and the altimeter less with the synthetic vision view. This supports the notion that utilizing a synthetic vision display should not adversely impact visual acquisition of data. Self-report mental workload and situation awareness data highlight additional benefits of display integration and synthetic vision displays. Design and retrofit implications are discussed and future research is suggested to further examine these issues
    • …
    corecore