39,800 research outputs found

    Toward Optimal Feature Selection in Naive Bayes for Text Categorization

    Full text link
    Automated feature selection is important for text categorization to reduce the feature size and to speed up the learning process of classifiers. In this paper, we present a novel and efficient feature selection framework based on the Information Theory, which aims to rank the features with their discriminative capacity for classification. We first revisit two information measures: Kullback-Leibler divergence and Jeffreys divergence for binary hypothesis testing, and analyze their asymptotic properties relating to type I and type II errors of a Bayesian classifier. We then introduce a new divergence measure, called Jeffreys-Multi-Hypothesis (JMH) divergence, to measure multi-distribution divergence for multi-class classification. Based on the JMH-divergence, we develop two efficient feature selection methods, termed maximum discrimination (MDMD) and MDχ2MD-\chi^2 methods, for text categorization. The promising results of extensive experiments demonstrate the effectiveness of the proposed approaches.Comment: This paper has been submitted to the IEEE Trans. Knowledge and Data Engineering. 14 pages, 5 figure

    Extracting protein-protein interactions from text using rich feature vectors and feature selection

    Get PDF
    Because of the intrinsic complexity of natural language, automatically extracting accurate information from text remains a challenge. We have applied rich featurevectors derived from dependency graphs to predict protein-protein interactions using machine learning techniques. We present the first extensive analysis of applyingfeature selection in this domain, and show that it can produce more cost-effective models. For the first time, our technique was also evaluated on several large-scalecross-dataset experiments, which offers a more realistic view on model performance. During benchmarking, we encountered several fundamental problems hindering comparability with other methods. We present a set of practical guidelines to set up ameaningful evaluation. Finally, we have analysed the feature sets from our experiments before and after feature selection, and evaluated the contribution of both lexical and syntacticinformation to our method. The gained insight will be useful to develop better performing methods in this domain

    Radar-based Road User Classification and Novelty Detection with Recurrent Neural Network Ensembles

    Full text link
    Radar-based road user classification is an important yet still challenging task towards autonomous driving applications. The resolution of conventional automotive radar sensors results in a sparse data representation which is tough to recover by subsequent signal processing. In this article, classifier ensembles originating from a one-vs-one binarization paradigm are enriched by one-vs-all correction classifiers. They are utilized to efficiently classify individual traffic participants and also identify hidden object classes which have not been presented to the classifiers during training. For each classifier of the ensemble an individual feature set is determined from a total set of 98 features. Thereby, the overall classification performance can be improved when compared to previous methods and, additionally, novel classes can be identified much more accurately. Furthermore, the proposed structure allows to give new insights in the importance of features for the recognition of individual classes which is crucial for the development of new algorithms and sensor requirements.Comment: 8 pages, 9 figures, accepted paper for 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, June 201

    Digging into acceptor splice site prediction : an iterative feature selection approach

    Get PDF
    Feature selection techniques are often used to reduce data dimensionality, increase classification performance, and gain insight into the processes that generated the data. In this paper, we describe an iterative procedure of feature selection and feature construction steps, improving the classification of acceptor splice sites, an important subtask of gene prediction. We show that acceptor prediction can benefit from feature selection, and describe how feature selection techniques can be used to gain new insights in the classification of acceptor sites. This is illustrated by the identification of a new, biologically motivated feature: the AG-scanning feature. The results described in this paper contribute both to the domain of gene prediction, and to research in feature selection techniques, describing a new wrapper based feature weighting method that aids in knowledge discovery when dealing with complex datasets
    corecore