13,052 research outputs found

    An evaluation of Java implementations of message-passing

    Get PDF

    An evaluation of Java implementations of message‐passing

    Get PDF

    FastMPJ: a scalable and efficient Java message-passing library

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Cluster Computing. The final authenticated version is available online at: http://dx.doi.org/https://doi.org/10.1007/s10586-014-0345-4[Abstract] The performance and scalability of communications are key for high performance computing (HPC) applications in the current multi-core era. Despite the significant benefits (e.g., productivity, portability, multithreading) of Java for parallel programming, its poor communications support has hindered its adoption in the HPC community. This paper presents FastMPJ, an efficient message-passing in Java (MPJ) library, boosting Java for HPC by: (1) providing high-performance shared memory communications using Java threads; (2) taking full advantage of high-speed cluster networks (e.g., InfiniBand) to provide low-latency and high bandwidth communications; (3) including a scalable collective library with topology aware primitives, automatically selected at runtime; (4) avoiding Java data buffering overheads through zero-copy protocols; and (5) implementing the most widely extended MPI-like Java bindings for a highly productive development. The comprehensive performance evaluation on representative testbeds (InfiniBand, 10 Gigabit Ethernet, Myrinet, and shared memory systems) has shown that FastMPJ communication primitives rival native MPI implementations, significantly improving the efficiency and scalability of Java HPC parallel applications.Ministerio de Educación y Ciencia; AP2010-4348Ministerio de Economía y Competitividad; TIN2010-16735Xunta de Galicia; CN2012/211Xunta de Galicia; GRC2013/05

    F-MPJ: scalable Java message-passing communications on parallel systems

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final authenticated version is available online at: https://doi.org/10.1007/s11227-009-0270-0[Abstract] This paper presents F-MPJ (Fast MPJ), a scalable and efficient Message-Passing in Java (MPJ) communication middleware for parallel computing. The increasing interest in Java as the programming language of the multi-core era demands scalable performance on hybrid architectures (with both shared and distributed memory spaces). However, current Java communication middleware lacks efficient communication support. F-MPJ boosts this situation by: (1) providing efficient non-blocking communication, which allows communication overlapping and thus scalable performance; (2) taking advantage of shared memory systems and high-performance networks through the use of our high-performance Java sockets implementation (named JFS, Java Fast Sockets); (3) avoiding the use of communication buffers; and (4) optimizing MPJ collective primitives. Thus, F-MPJ significantly improves the scalability of current MPJ implementations. A performance evaluation on an InfiniBand multi-core cluster has shown that F-MPJ communication primitives outperform representative MPJ libraries up to 60 times. Furthermore, the use of F-MPJ in communication-intensive MPJ codes has increased their performance up to seven times.Ministerio de Educación y Ciencia; TIN2004-07797-C02Ministerio de Educación y Ciencia; TIN2007-67537-C03-2Xunta de Galicia; PGIDIT06PXIB105228P

    Revisiting Actor Programming in C++

    Full text link
    The actor model of computation has gained significant popularity over the last decade. Its high level of abstraction makes it appealing for concurrent applications in parallel and distributed systems. However, designing a real-world actor framework that subsumes full scalability, strong reliability, and high resource efficiency requires many conceptual and algorithmic additives to the original model. In this paper, we report on designing and building CAF, the "C++ Actor Framework". CAF targets at providing a concurrent and distributed native environment for scaling up to very large, high-performance applications, and equally well down to small constrained systems. We present the key specifications and design concepts---in particular a message-transparent architecture, type-safe message interfaces, and pattern matching facilities---that make native actors a viable approach for many robust, elastic, and highly distributed developments. We demonstrate the feasibility of CAF in three scenarios: first for elastic, upscaling environments, second for including heterogeneous hardware like GPGPUs, and third for distributed runtime systems. Extensive performance evaluations indicate ideal runtime behaviour for up to 64 cores at very low memory footprint, or in the presence of GPUs. In these tests, CAF continuously outperforms the competing actor environments Erlang, Charm++, SalsaLite, Scala, ActorFoundry, and even the OpenMPI.Comment: 33 page

    Monitoring of distributed component interactions

    Get PDF
    We have describe a generic monitoring approach that can be used to enhance the quality of distributed component software. The generality of the approach is achieved through using reflective technology, i.e. CORBA Interceptors, CORBA POA and Java 2 features. A drawback of using interceptors is the fact that their interfaces have not been standardised so far. However, the process of standardisation is ongoing and has recently resulted in an OMG Joint Revised Submission called Portable Interceptors. Although the Java 2 API enables discovery of ‘forks’ in the execution, we find it lacking functionality for the purpose of discovering synchronisation points (e.g., ‘joins’) within multithreaded components
    corecore