3,414 research outputs found

    Regularization and Bayesian Learning in Dynamical Systems: Past, Present and Future

    Full text link
    Regularization and Bayesian methods for system identification have been repopularized in the recent years, and proved to be competitive w.r.t. classical parametric approaches. In this paper we shall make an attempt to illustrate how the use of regularization in system identification has evolved over the years, starting from the early contributions both in the Automatic Control as well as Econometrics and Statistics literature. In particular we shall discuss some fundamental issues such as compound estimation problems and exchangeability which play and important role in regularization and Bayesian approaches, as also illustrated in early publications in Statistics. The historical and foundational issues will be given more emphasis (and space), at the expense of the more recent developments which are only briefly discussed. The main reason for such a choice is that, while the recent literature is readily available, and surveys have already been published on the subject, in the author's opinion a clear link with past work had not been completely clarified.Comment: Plenary Presentation at the IFAC SYSID 2015. Submitted to Annual Reviews in Contro

    Variational Downscaling, Fusion and Assimilation of Hydrometeorological States via Regularized Estimation

    Full text link
    Improved estimation of hydrometeorological states from down-sampled observations and background model forecasts in a noisy environment, has been a subject of growing research in the past decades. Here, we introduce a unified framework that ties together the problems of downscaling, data fusion and data assimilation as ill-posed inverse problems. This framework seeks solutions beyond the classic least squares estimation paradigms by imposing proper regularization, which are constraints consistent with the degree of smoothness and probabilistic structure of the underlying state. We review relevant regularization methods in derivative space and extend classic formulations of the aforementioned problems with particular emphasis on hydrologic and atmospheric applications. Informed by the statistical characteristics of the state variable of interest, the central results of the paper suggest that proper regularization can lead to a more accurate and stable recovery of the true state and hence more skillful forecasts. In particular, using the Tikhonov and Huber regularization in the derivative space, the promise of the proposed framework is demonstrated in static downscaling and fusion of synthetic multi-sensor precipitation data, while a data assimilation numerical experiment is presented using the heat equation in a variational setting

    A 4D-Var Method with Flow-Dependent Background Covariances for the Shallow-Water Equations

    Get PDF
    The 4D-Var method for filtering partially observed nonlinear chaotic dynamical systems consists of finding the maximum a-posteriori (MAP) estimator of the initial condition of the system given observations over a time window, and propagating it forward to the current time via the model dynamics. This method forms the basis of most currently operational weather forecasting systems. In practice the optimization becomes infeasible if the time window is too long due to the non-convexity of the cost function, the effect of model errors, and the limited precision of the ODE solvers. Hence the window has to be kept sufficiently short, and the observations in the previous windows can be taken into account via a Gaussian background (prior) distribution. The choice of the background covariance matrix is an important question that has received much attention in the literature. In this paper, we define the background covariances in a principled manner, based on observations in the previous bb assimilation windows, for a parameter b≥1b\ge 1. The method is at most bb times more computationally expensive than using fixed background covariances, requires little tuning, and greatly improves the accuracy of 4D-Var. As a concrete example, we focus on the shallow-water equations. The proposed method is compared against state-of-the-art approaches in data assimilation and is shown to perform favourably on simulated data. We also illustrate our approach on data from the recent tsunami of 2011 in Fukushima, Japan.Comment: 32 pages, 5 figure

    Derivative-free online learning of inverse dynamics models

    Full text link
    This paper discusses online algorithms for inverse dynamics modelling in robotics. Several model classes including rigid body dynamics (RBD) models, data-driven models and semiparametric models (which are a combination of the previous two classes) are placed in a common framework. While model classes used in the literature typically exploit joint velocities and accelerations, which need to be approximated resorting to numerical differentiation schemes, in this paper a new `derivative-free' framework is proposed that does not require this preprocessing step. An extensive experimental study with real data from the right arm of the iCub robot is presented, comparing different model classes and estimation procedures, showing that the proposed `derivative-free' methods outperform existing methodologies.Comment: 14 pages, 11 figure

    Decentralized Maximum Likelihood Estimation for Sensor Networks Composed of Nonlinearly Coupled Dynamical Systems

    Full text link
    In this paper we propose a decentralized sensor network scheme capable to reach a globally optimum maximum likelihood (ML) estimate through self-synchronization of nonlinearly coupled dynamical systems. Each node of the network is composed of a sensor and a first-order dynamical system initialized with the local measurements. Nearby nodes interact with each other exchanging their state value and the final estimate is associated to the state derivative of each dynamical system. We derive the conditions on the coupling mechanism guaranteeing that, if the network observes one common phenomenon, each node converges to the globally optimal ML estimate. We prove that the synchronized state is globally asymptotically stable if the coupling strength exceeds a given threshold. Acting on a single parameter, the coupling strength, we show how, in the case of nonlinear coupling, the network behavior can switch from a global consensus system to a spatial clustering system. Finally, we show the effect of the network topology on the scalability properties of the network and we validate our theoretical findings with simulation results.Comment: Journal paper accepted on IEEE Transactions on Signal Processin
    • …
    corecore