57 research outputs found

    Design of Non-Binary Quasi-Cyclic LDPC Codes by ACE Optimization

    Full text link
    An algorithm for constructing Tanner graphs of non-binary irregular quasi-cyclic LDPC codes is introduced. It employs a new method for selection of edge labels allowing control over the code's non-binary ACE spectrum and resulting in low error-floor. The efficiency of the algorithm is demonstrated by generating good codes of short to moderate length over small fields, outperforming codes generated by the known methods.Comment: Accepted to 2013 IEEE Information Theory Worksho

    Distance Properties of Short LDPC Codes and their Impact on the BP, ML and Near-ML Decoding Performance

    Full text link
    Parameters of LDPC codes, such as minimum distance, stopping distance, stopping redundancy, girth of the Tanner graph, and their influence on the frame error rate performance of the BP, ML and near-ML decoding over a BEC and an AWGN channel are studied. Both random and structured LDPC codes are considered. In particular, the BP decoding is applied to the code parity-check matrices with an increasing number of redundant rows, and the convergence of the performance to that of the ML decoding is analyzed. A comparison of the simulated BP, ML, and near-ML performance with the improved theoretical bounds on the error probability based on the exact weight spectrum coefficients and the exact stopping size spectrum coefficients is presented. It is observed that decoding performance very close to the ML decoding performance can be achieved with a relatively small number of redundant rows for some codes, for both the BEC and the AWGN channels

    Low-Density Arrays of Circulant Matrices: Rank and Row-Redundancy Analysis, and Quasi-Cyclic LDPC Codes

    Full text link
    This paper is concerned with general analysis on the rank and row-redundancy of an array of circulants whose null space defines a QC-LDPC code. Based on the Fourier transform and the properties of conjugacy classes and Hadamard products of matrices, we derive tight upper bounds on rank and row-redundancy for general array of circulants, which make it possible to consider row-redundancy in constructions of QC-LDPC codes to achieve better performance. We further investigate the rank of two types of construction of QC-LDPC codes: constructions based on Vandermonde Matrices and Latin Squares and give combinatorial expression of the exact rank in some specific cases, which demonstrates the tightness of the bound we derive. Moreover, several types of new construction of QC-LDPC codes with large row-redundancy are presented and analyzed.Comment: arXiv admin note: text overlap with arXiv:1004.118

    Design of a GF(64)-LDPC Decoder Based on the EMS Algorithm

    No full text
    International audienceThis paper presents the architecture, performance and implementation results of a serial GF(64)-LDPC decoder based on a reduced-complexity version of the Extended Min-Sum algorithm. The main contributions of this work correspond to the variable node processing, the codeword decision and the elementary check node processing. Post-synthesis area results show that the decoder area is less than 20% of a Virtex 4 FPGA for a decoding throughput of 2.95 Mbps. The implemented decoder presents performance at less than 0.7 dB from the Belief Propagation algorithm for different code lengths and rates. Moreover, the proposed architecture can be easily adapted to decode very high Galois Field orders, such as GF(4096) or higher, by slightly modifying a marginal part of the design

    Low-Complexity LP Decoding of Nonbinary Linear Codes

    Full text link
    Linear Programming (LP) decoding of Low-Density Parity-Check (LDPC) codes has attracted much attention in the research community in the past few years. LP decoding has been derived for binary and nonbinary linear codes. However, the most important problem with LP decoding for both binary and nonbinary linear codes is that the complexity of standard LP solvers such as the simplex algorithm remains prohibitively large for codes of moderate to large block length. To address this problem, two low-complexity LP (LCLP) decoding algorithms for binary linear codes have been proposed by Vontobel and Koetter, henceforth called the basic LCLP decoding algorithm and the subgradient LCLP decoding algorithm. In this paper, we generalize these LCLP decoding algorithms to nonbinary linear codes. The computational complexity per iteration of the proposed nonbinary LCLP decoding algorithms scales linearly with the block length of the code. A modified BCJR algorithm for efficient check-node calculations in the nonbinary basic LCLP decoding algorithm is also proposed, which has complexity linear in the check node degree. Several simulation results are presented for nonbinary LDPC codes defined over Z_4, GF(4), and GF(8) using quaternary phase-shift keying and 8-phase-shift keying, respectively, over the AWGN channel. It is shown that for some group-structured LDPC codes, the error-correcting performance of the nonbinary LCLP decoding algorithms is similar to or better than that of the min-sum decoding algorithm.Comment: To appear in IEEE Transactions on Communications, 201
    • 

    corecore