14,859 research outputs found

    Hybrid Coding Technique for Pulse Detection in an Optical Time Domain Reflectometer

    Get PDF
    The paper introduces a novel hybrid coding technique for improved pulse detection in an optical time domain reflectometer. The hybrid schemes combines Simplex codes with signal averaging to articulate a very sophisticated coding technique that considerably reduces the processing time to extract specified coding gains in comparison to the existing techniques. The paper quantifies the coding gain of the hybrid scheme mathematically and provide simulative results in direct agreement with the theoretical performance. Furthermore, the hybrid scheme has been tested on our self-developed OTDR

    An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Full text link
    The error pattern correcting code (EPCC) can be constructed to provide a syndrome decoding table targeting the dominant error events of an inter-symbol interference channel at the output of the Viterbi detector. For the size of the syndrome table to be manageable and the list of possible error events to be reasonable in size, the codeword length of EPCC needs to be short enough. However, the rate of such a short length code will be too low for hard drive applications. To accommodate the required large redundancy, it is possible to record only a highly compressed function of the parity bits of EPCC's tensor product with a symbol correcting code. In this paper, we show that the proposed tensor error-pattern correcting code (T-EPCC) is linear time encodable and also devise a low-complexity soft iterative decoding algorithm for EPCC's tensor product with q-ary LDPC (T-EPCC-qLDPC). Simulation results show that T-EPCC-qLDPC achieves almost similar performance to single-level qLDPC with a 1/2 KB sector at 50% reduction in decoding complexity. Moreover, 1 KB T-EPCC-qLDPC surpasses the performance of 1/2 KB single-level qLDPC at the same decoder complexity.Comment: Hakim Alhussien, Jaekyun Moon, "An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Hierarchical and High-Girth QC LDPC Codes

    Full text link
    We present a general approach to designing capacity-approaching high-girth low-density parity-check (LDPC) codes that are friendly to hardware implementation. Our methodology starts by defining a new class of "hierarchical" quasi-cyclic (HQC) LDPC codes that generalizes the structure of quasi-cyclic (QC) LDPC codes. Whereas the parity check matrices of QC LDPC codes are composed of circulant sub-matrices, those of HQC LDPC codes are composed of a hierarchy of circulant sub-matrices that are in turn constructed from circulant sub-matrices, and so on, through some number of levels. We show how to map any class of codes defined using a protograph into a family of HQC LDPC codes. Next, we present a girth-maximizing algorithm that optimizes the degrees of freedom within the family of codes to yield a high-girth HQC LDPC code. Finally, we discuss how certain characteristics of a code protograph will lead to inevitable short cycles, and show that these short cycles can be eliminated using a "squashing" procedure that results in a high-girth QC LDPC code, although not a hierarchical one. We illustrate our approach with designed examples of girth-10 QC LDPC codes obtained from protographs of one-sided spatially-coupled codes.Comment: Submitted to IEEE Transactions on Information THeor

    The Indian Economy Since Liberalisation: the Structure and Composition of Exports and Industrial Transformation (1980 – 2000)

    Get PDF
    This paper assesses empirically structural change in the Indian manufacturing based export sector, based on an analysis of 143 industries / product groupings (mainly manufacturing industries). Trade indices such as Balassa´s revealed comparative advantage (RCA) index, and other variants commonly employed in the literature are used in our analysis. Regression analysis on the RSCA indices is used to further analyse structural change. Thereafter, the stability of the RCA indices is examined, as well as the process of their intertemporal evolution. Three technology categories (high technology, medium technology and low technology) are examined individually and SITC product codes are used as proxies for export industries, in order to look at industry movements within each of these groups. This analysis enables us to assess the export performance of Indian industries in the selected product-industry groupings in detail and evaluate the prospects for growth of particular Indian industrial groupings

    A Novel Data-Aided Channel Estimation with Reduced Complexity for TDS-OFDM Systems

    Get PDF
    In contrast to the classical cyclic prefix (CP)-OFDM, the time domain synchronous (TDS)-OFDM employs a known pseudo noise (PN) sequence as guard interval (GI). Conventional channel estimation methods for TDS-OFDM are based on the exploitation of the PN sequence and consequently suffer from intersymbol interference (ISI). This paper proposes a novel dataaided channel estimation method which combines the channel estimates obtained from the PN sequence and, most importantly, additional channel estimates extracted from OFDM data symbols. Data-aided channel estimation is carried out using the rebuilt OFDM data symbols as virtual training sequences. In contrast to the classical turbo channel estimation, interleaving and decoding functions are not included in the feedback loop when rebuilding OFDM data symbols thereby reducing the complexity. Several improved techniques are proposed to refine the data-aided channel estimates, namely one-dimensional (1-D)/two-dimensional (2-D) moving average and Wiener filtering. Finally, the MMSE criteria is used to obtain the best combination results and an iterative process is proposed to progressively refine the estimation. Both MSE and BER simulations using specifications of the DTMB system are carried out to prove the effectiveness of the proposed algorithm even in very harsh channel conditions such as in the single frequency network (SFN) case
    corecore