912 research outputs found

    Saliency-guided Adaptive Seeding for Supervoxel Segmentation

    Full text link
    We propose a new saliency-guided method for generating supervoxels in 3D space. Rather than using an evenly distributed spatial seeding procedure, our method uses visual saliency to guide the process of supervoxel generation. This results in densely distributed, small, and precise supervoxels in salient regions which often contain objects, and larger supervoxels in less salient regions that often correspond to background. Our approach largely improves the quality of the resulting supervoxel segmentation in terms of boundary recall and under-segmentation error on publicly available benchmarks.Comment: 6 pages, accepted to IROS201

    Deep Saliency with Encoded Low level Distance Map and High Level Features

    Full text link
    Recent advances in saliency detection have utilized deep learning to obtain high level features to detect salient regions in a scene. These advances have demonstrated superior results over previous works that utilize hand-crafted low level features for saliency detection. In this paper, we demonstrate that hand-crafted features can provide complementary information to enhance performance of saliency detection that utilizes only high level features. Our method utilizes both high level and low level features for saliency detection under a unified deep learning framework. The high level features are extracted using the VGG-net, and the low level features are compared with other parts of an image to form a low level distance map. The low level distance map is then encoded using a convolutional neural network(CNN) with multiple 1X1 convolutional and ReLU layers. We concatenate the encoded low level distance map and the high level features, and connect them to a fully connected neural network classifier to evaluate the saliency of a query region. Our experiments show that our method can further improve the performance of state-of-the-art deep learning-based saliency detection methods.Comment: Accepted by IEEE Conference on Computer Vision and Pattern Recognition(CVPR) 2016. Project page: https://github.com/gylee1103/SaliencyEL
    • …
    corecore