17 research outputs found

    Large deviations analysis for the M/H2/n+MM/H_2/n + M queue in the Halfin-Whitt regime

    Full text link
    We consider the FCFS M/H2/n+MM/H_2/n + M queue in the Halfin-Whitt heavy traffic regime. It is known that the normalized sequence of steady-state queue length distributions is tight and converges weakly to a limiting random variable W. However, those works only describe W implicitly as the invariant measure of a complicated diffusion. Although it was proven by Gamarnik and Stolyar that the tail of W is sub-Gaussian, the actual value of limxx2log(P(W>x))\lim_{x \rightarrow \infty}x^{-2}\log(P(W >x)) was left open. In subsequent work, Dai and He conjectured an explicit form for this exponent, which was insensitive to the higher moments of the service distribution. We explicitly compute the true large deviations exponent for W when the abandonment rate is less than the minimum service rate, the first such result for non-Markovian queues with abandonments. Interestingly, our results resolve the conjecture of Dai and He in the negative. Our main approach is to extend the stochastic comparison framework of Gamarnik and Goldberg to the setting of abandonments, requiring several novel and non-trivial contributions. Our approach sheds light on several novel ways to think about multi-server queues with abandonments in the Halfin-Whitt regime, which should hold in considerable generality and provide new tools for analyzing these systems

    Performance analysis of time-dependent queueing systems: survey and classification

    Full text link
    Many queueing systems are subject to time-dependent changes in system parameters, such as the arrival rate or number of servers. Examples include time-dependent call volumes and agents at inbound call centers, time-varying air traffic at airports, time-dependent truck arrival rates at seaports, and cyclic message volumes in computer systems.There are several approaches for the performance analysis of queueing systems with deterministic parameter changes over time. In this survey, we develop a classification scheme that groups these approaches according to their underlying key ideas into (i) numerical and analytical solutions,(ii)approaches based on models with piecewise constant parameters, and (iii) approaches based on mod-ified system characteristics. Additionally, we identify links between the different approaches and provide a survey of applications that are categorized into service, road and air traffic, and IT systems

    Sharing delay information in service systems: a literature survey

    Get PDF
    Service providers routinely share information about upcoming waiting times with their customers, through delay announcements. The need to effectively manage the provision of these announcements has led to a substantial growth in the body of literature which is devoted to that topic. In this survey paper, we systematically review the relevant literature, summarize some of its key ideas and findings, describe the main challenges that the different approaches to the problem entail, and formulate research directions that would be interesting to consider in future work

    Call Center Capacity Planning

    Get PDF

    Analysis of buffer allocations in time-dependent and stochastic flow lines

    Full text link
    This thesis reviews and classifies the literature on the Buffer Allocation Problem under steady-state conditions and on performance evaluation approaches for queueing systems with time-dependent parameters. Subsequently, new performance evaluation approaches are developed. Finally, a local search algorithm for the derivation of time-dependent buffer allocations is proposed. The algorithm is based on numerically observed monotonicity properties of the system performance in the time-dependent buffer allocations. Numerical examples illustrate that time-dependent buffer allocations represent an adequate way of minimizing the average WIP in the flow line while achieving a desired service level

    Empirical Studies in Hospital Emergency Departments

    Get PDF
    This dissertation focuses on the operational impacts of crowding in hospital emergency departments. The body of this work is comprised of three essays. In the first essay, Waiting Patiently: An Empirical Study of Queue Abandonment in an Emergency Department, we study queue abandonment, or left without being seen. We show that abandonment is not only influenced by wait time, but also by the queue length and the observable queue flows during the waiting exposure. We show that patients are sensitive to being jumped in the line and that patients respond differently to people more sick and less sick moving through the system. This study shows that managers have an opportunity to impact abandonment behavior by altering what information is available to waiting customers. In the second essay, Doctors Under Load: An Empirical Study of State-Dependent Service Times in Emergency Care, we show that when crowded, multiple mechanisms in the emergency department act to retard patient treatment, but care providers adjust their clinical behavior to accelerate the service. We identify two mechanisms that providers use to accelerate the system: early task initiation and task reduction. In contrast to other recent works, we find the net effect of these countervailing forces to be an increase in service time when the system is crowded. Further, we use simulation to show that ignoring state-dependent service times leads to modeling errors that could cause hospitals to overinvest in human and physical resources. In the final essay, The Financial Consequences of Lost Demand and Reducing Boarding in Hospital Emergency Departments, we use discrete event simulation to estimate the number of patients lost to Left Without Being Seen and ambulance diversion as a result of patients waiting in the emergency department for an inpatient bed (known as boarding). These lost patients represent both a failure of the emergency department to meet the needs of those seeking care and lost revenue for the hospital. We show that dynamic bed management policies that proactively cancel some non-emergency patients when the hospital is near capacity can lead to reduced boarding, increased number of patients served, and increased hospital revenue

    QUEUING SYSTEMS WITH STRATEGIC AND LEARNING CUSTOMERS

    Get PDF
    In many service systems customers are strategic and can make their own decisions. In particular, customers can be delay-sensitive and they will leave the system if they think the waiting time is too long. For the service provider, it is important to understand customers’ behaviors and choose the appropriate system design. This dissertation consists of two research projects. The first project studies the pooling decision when customers are strategic. It is generally accepted that operating with a combined (i.e., pooled) queue rather than separate (i.e., dedicated) queues is beneficial mainly because pooling queues reduces long-run average sojourn time. In fact, this is a well-established result in the literature when jobs cannot make decisions and servers and jobs are identical. An important corollary of this finding is that pooling queues improves social welfare in the aforementioned setting. We consider an observable multi-server queueing system which can be operated with either dedicated queues or a pooled one. Customers are delay-sensitive and they decide to join or balk based on queue length information upon arrival. In this setting, we prove that, contrary to the common understanding, pooling queues can considerably increase the long-run average sojourn time so that the pooled system results in strictly smaller social welfare (and strictly smaller consumer surplus) than the dedicated system under certain conditions. Specifically, pooling queues leads to performance loss when the arrival-rate-to-service-rate ratio and the relative benefit of service are both large. We also prove that performance loss due to pooling queues can be significant. Our numerical studies demonstrate that pooling queues can decrease the social welfare (and the consumer surplus) by more than 95%. The benefit of pooling is commonly believed to increase with the system size. In contrast to this belief, our analysis shows that when delay-sensitive customers make rational joining decisions, the magnitude of the performance loss due to pooling can strictly increase with the system size. The second project studies the learning behavior when customers don’t have full information of the service speed. We consider a single-server queueing system where customers make join- ing and abandonment decisions when the service rate is unknown. We study different ways in which customers process service-related information, and how these impact the performance of a service provider. Specifically, we analyze forward-looking, myopic and naive information process- ing behaviors by customers. Forward-looking customers learn about the service rate in a Bayesian framework by using their observations while waiting in the queue. Moreover, they make their abandonment decisions considering both belief and potential future payoffs. On the other hand, naive customers ignore the available information when they make their decisions. We prove that regardless of the way in which the information is processed by customers, a customer’s optimal joining and abandonment policy is of threshold-type. There is a rich literature that establishes that forward-looking customers are detrimental to a firm in settings different than queueing. In contrast to this common understanding, we prove that for service systems, forward-looking customers are beneficial to the firm under certain conditions.Doctor of Philosoph
    corecore