84 research outputs found

    Robust Padé approximation via SVD

    Get PDF
    Padé approximation is considered from the point of view of robust methods of numerical linear algebra, in particular the singular value decomposition. This leads to an algorithm for practical computation that bypasses most problems of solution of nearly-singular systems and spurious pole-zero pairs caused by rounding errors; a Matlab code is provided. The success of this algorithm suggests that there might be variants of Padé approximation that would be pointwise convergent as the degrees of the numerator and denominator increase to infinity, unlike traditional Padé approximants, which converge only in measure or capacity

    Robust solid modeling by avoiding redundancy for manifold objects in boundary representation

    Get PDF
    Journal ArticleThis paper describes a new approach to the robustness problem in solid modeling. We identify as t h e main cause of t h e lack of robustness that interdependent topological relations are derived from approximate data. Disregarding the interdependencies very likely violates basic properties, such as reflexivity, and transitivity, resulting in invalid data representations, such as dangling edges, missing faces, etc. We show that the boundary of manifold objects can be represented without redundant relations which avoids inconsistencies. An algorithm for regularized set operations for manifold solids which is based on the principle of avoiding and eliminating redundancy is described. This algorithm has been implemented for objects bounded by planar and natural quadric surfaces; it handles coincidence and incidence cases between surfaces and curves robustly

    Robust boolean set operations for manifold solids bounded by planar and natural quadric surfaces

    Get PDF
    Journal ArticleThis paper describes our latest effort in robust solid modeling. An algorithm for set operations on solids bounded by planar and natural quadric surfaces, that handles all geometrically degenerate cases robustly, is described. We identify as the main reason for the lack of robustness in geometric modeling, that dependent relations are handled inconsistently by disregarding the dependencies. Instead of using explicit reasoning to make dependent decisions consistent, we show that redundant computation can be avoided by correctly ordering the operations, and redundant data can be eliminated in the set operation algorithm, so that the result is guaranteed to be a valid two-manifold solid

    Delaunay triangulation of imprecise points in linear time after preprocessing

    Get PDF
    An assumption of nearly all algorithms in computational geometry is that the input points are given precisely, so it is interesting to ask what is the value of imprecise information about points. We show how to preprocess a set of disjoint unit disks in the plane in time so that if one point per disk is specified with precise coordinates, the Delaunay triangulation can be computed in linear time. From the Delaunay, one can obtain the Gabriel graph and a Euclidean minimum spanning tree; it is interesting to note the roles that these two structures play in our algorithm to quickly compute the Delaunay

    Shadow Computations using Robust Epsilon Visibility

    Get PDF
    Analytic visibility algorithms, for example methods which compute a subdivided mesh to represent shadows, are notoriously unrobust and hard to use in practice. We present a new method based on a generalized definition of extremal stabbing lines, which are the extremities of shadow boundaries. We treat scenes containing multiple edges or vertices in degenerate configurations, (e.g., collinear or coplanar). We introduce a robust epsilon method to determine whether each generalized extremal stabbing line is blocked, or is touched by these scene elements, and thus added to the line's generators. We develop robust blocker predicates for polygons which are smaller than epsilon. For larger values, small shadow features merge and eventually disappear. We can thus robustly connect generalized extremal stabbing lines in degenerate scenes to form shadow boundaries. We show that our approach is consistent, and that shadow boundary connectivity is preserved when features merge. We have implemented our algorithm, and show that we can robustly compute analytic shadow boundaries to the precision of our chosen epsilon threshold for non-trivial models, containing numerous degeneracies

    Algorithms and methods for discrete mesh repair

    Get PDF
    Computational analysis and design has become a fundamental part of product research, development, and manufacture in aerospace, automotive, and other industries. In general the success of the specific application depends heavily on the accuracy and consistency of the computational model used. The aim of this work is to reduce the time needed to prepare geometry for mesh generation. This will be accomplished by developing tools that semi-automatically repair discrete data. Providing a level of automation to the process of repairing large, complex problems in discrete data will significantly accelerate the grid generation process. The developed algorithms are meant to offer semi-automated solutions to complicated geometrical problems—specifically discrete mesh intersections and isolated boundaries. The intersection-repair strategy presented here focuses on repairing the intersection in-place as opposed to re-discretizing the intersecting geometries. Combining robust, efficient methods of detecting intersections and then repairing intersecting geometries in-place produces a significant improvement over techniques used in current literature. The result of this intersection process is a non-manifold, non-intersecting geometry that is free of duplicate and degenerate geometry. Results are presented showing the accuracy and consistency of the intersection repair tool. Isolated boundaries are a type of gap that current research does not address directly. They are defined by discrete boundary edges that are unable to be paired with nearby discrete boundary edges in order to fill the existing gap. In this research the method of repair seeks to fill the gap by extruding the isolated boundary along a defined vector so that it is topologically adjacent to a nearby surface. The outcome of the repair process is that the isolated boundaries no longer exist because the gap has been filled. Results are presented showing the precision of the edge projection and the advantage of edge splitting in the repair of isolated boundaries

    ReMESH: An interactive and user-friendly environment for remeshing surface triangulations

    Get PDF
    Research and software development involving geometry processing are often slowed down by the absence of suitable models for testing and benchmark purposes. In particular, when dealing with triangle meshes, a researcher may need to check the behavior of a new algorithm on several particular cases. In most situations, the test model is easily conceivable in mind but, at actual design time, its formalization turns out to be a much harder task than expected. Also, simple modifications over an existing triangle mesh may become a tedious work without a suitable interactive environment. In order to simplify the remeshing of existing models, we have developed a tool to interactively edit manifold triangle meshes, mostly through user friendly actions such as mouse clicks and drags
    • …
    corecore