5,306 research outputs found

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    An Efficient Requirement-Aware Attachment Policy for Future Millimeter Wave Vehicular Networks

    Full text link
    The automotive industry is rapidly evolving towards connected and autonomous vehicles, whose ever more stringent data traffic requirements might exceed the capacity of traditional technologies for vehicular networks. In this scenario, densely deploying millimeter wave (mmWave) base stations is a promising approach to provide very high transmission speeds to the vehicles. However, mmWave signals suffer from high path and penetration losses which might render the communication unreliable and discontinuous. Coexistence between mmWave and Long Term Evolution (LTE) communication systems has therefore been considered to guarantee increased capacity and robustness through heterogeneous networking. Following this rationale, we face the challenge of designing fair and efficient attachment policies in heterogeneous vehicular networks. Traditional methods based on received signal quality criteria lack consideration of the vehicle's individual requirements and traffic demands, and lead to suboptimal resource allocation across the network. In this paper we propose a Quality-of-Service (QoS) aware attachment scheme which biases the cell selection as a function of the vehicular service requirements, preventing the overload of transmission links. Our simulations demonstrate that the proposed strategy significantly improves the percentage of vehicles satisfying application requirements and delivers efficient and fair association compared to state-of-the-art schemes.Comment: 8 pages, 8 figures, 2 tables, accepted to the 30th IEEE Intelligent Vehicles Symposiu

    A realistic path loss model for real-time communication in the urban grid environment for Vehicular Ad hoc Networks

    Get PDF
    Wireless signal transmission is influenced by environmental effects. These effects have also been challenging for Vehicular Ad hoc Network (VANET) in real-time communication. More specifically, in an urban environment, with high mobility among vehicles, a vehicle’s status from the transmitter can instantly trigger from line of sight to non-line of sight, which may cause loss of real-time communication. In order to overcome this, a deterministic signal propagation model is required, which has less complexity and more feasibility of implementation. Hence, we propose a realistic path loss model which adopts ray tracing technique for VANET in a grid urban environment with less computational complexity. To evaluate the model, it is applied to a vehicular simulation scenario. The results obtained are compared with different path loss models in the same scenario based on path loss value and application layer performance analysis. The proposed path loss model provides higher loss value in dB compared to other models. Nevertheless, the performance of vehicle-vehicle communication, which is evaluated by the packet delivery ratio with different vehicle transmitter density verifies improvement in real-time vehicle-vehicle communication. In conclusion, we present a realistic path loss model that improves vehicle-vehicle wireless real-time communication in the grid urban environment
    corecore