7,071 research outputs found

    An ensemble of intelligent water drop algorithm for feature selection optimization problem

    Get PDF
    Master River Multiple Creeks Intelligent Water Drops (MRMC-IWD) is an ensemble model of the intelligent water drop, whereby a divide-and-conquer strategy is utilized to improve the search process. In this paper, the potential of the MRMC-IWD using real-world optimization problems related to feature selection and classification tasks is assessed. An experimental study on a number of publicly available benchmark data sets and two real-world problems, namely human motion detection and motor fault detection, are conducted. Comparative studies pertaining to the features reduction and classification accuracies using different evaluation techniques (consistency-based, CFS, and FRFS) and classifiers (i.e., C4.5, VQNN, and SVM) are conducted. The results ascertain the effectiveness of the MRMC-IWD in improving the performance of the original IWD algorithm as well as undertaking real-world optimization problems

    Modified and Ensemble Intelligent Water Drop Algorithms and Their Applications

    Get PDF
    1.1 Introduction Optimization is a process that concerns with finding the best solution of a given problem from among the possible solutions within an affordable time and cost (Weise et al., 2009). The first step in the optimization process is formulating the optimization problem through an objective function and a set of constrains that encompass the problem search space (ie, regions of feasible solutions). Every alternative (ie, solution) is represented by a set of decision variables. Each decision variable has a domain, which is a representation of the set of all possible values that the decision variable can take. The second step in optimization starts by utilizing an optimization method (ie, search method) to find the best candidate solutions. Candidate solution has a configuration of decision variables that satisfies the set of problem constrains, and that maximizes or minimizes the objective function (Boussaid et al., 2013). It converges to the optimal solution (ie, local or global optimal solution) by reaching the optimal values of the decision variables. Figure 1.1 depicts a 3D-fitness landscape of an optimization problem. It shows the concept of the local and global optima, where the local optimal solution is not necessarily the same as the global one (Weise et al., 2009). Optimization can be applied to many real-world problems in various domains. As an example, mathematicians apply optimization methods to identify the best outcome pertaining to some mathematical functions within a range of variables (Vesterstrom and Thomsen, 2004). In the presence of conflicting criteria, engineers use optimization methods t

    Modified And Ensemble Intelligent Water Drop Algorithms And Their Applications

    Get PDF
    Algoritma Titisan Air Cerdas (TAC) ialah model berasaskan kawanan yang sememangnya berguna untuk mengatasi masalah-masalah pengoptimuman. Tujuan utama kajian ini adalah untuk meningkatkan keupayaan algoritma TAC dan mengatasi keterbatasan algoritma tersebut, yang berkaitan dengan kepelbagaian populasi serta mengimbangangi penerokaan dan pengeksploitasian dalam menangani masalah-masalah pengoptimuman. Pertama, algoritma TAC yang diubahsuai, diperkenalkan. The Intelligent Water Drop (IWD) algorithm is a swarm-based model that is useful for undertaking optimization problems. The main aim of this research is to enhance the IWD algorithm and overcome its limitations pertaining to population diversity, as well as balanced exploration and exploitation in handling optimization problems

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System

    A human activity recognition framework using max-min features and key poses with differential evolution random forests classifier

    Get PDF
    This paper presents a novel framework for human daily activity recognition that is intended to rely on few training examples evidencing fast training times, making it suitable for real-time applications. The proposed framework starts with a feature extraction stage, where the division of each activity into actions of variable-size, based on key poses, is performed. Each action window is delimited by two consecutive and automatically identified key poses, where static (i.e. geometrical) and max-min dynamic (i.e. temporal) features are extracted. These features are first used to train a random forest (RF) classifier which was tested using the CAD-60 dataset, obtaining relevant overall average results. Then in a second stage, an extension of the RF is proposed, where the differential evolution meta-heuristic algorithm is used, as splitting node methodology. The main advantage of its inclusion is the fact that the differential evolution random forest has no thresholds to tune, but rather a few adjustable parameters with well-defined behavior

    A General Spatio-Temporal Clustering-Based Non-local Formulation for Multiscale Modeling of Compartmentalized Reservoirs

    Full text link
    Representing the reservoir as a network of discrete compartments with neighbor and non-neighbor connections is a fast, yet accurate method for analyzing oil and gas reservoirs. Automatic and rapid detection of coarse-scale compartments with distinct static and dynamic properties is an integral part of such high-level reservoir analysis. In this work, we present a hybrid framework specific to reservoir analysis for an automatic detection of clusters in space using spatial and temporal field data, coupled with a physics-based multiscale modeling approach. In this work a novel hybrid approach is presented in which we couple a physics-based non-local modeling framework with data-driven clustering techniques to provide a fast and accurate multiscale modeling of compartmentalized reservoirs. This research also adds to the literature by presenting a comprehensive work on spatio-temporal clustering for reservoir studies applications that well considers the clustering complexities, the intrinsic sparse and noisy nature of the data, and the interpretability of the outcome. Keywords: Artificial Intelligence; Machine Learning; Spatio-Temporal Clustering; Physics-Based Data-Driven Formulation; Multiscale Modelin

    Flood Forecasting Using Machine Learning Methods

    Get PDF
    This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Wate

    Coupling different methods for overcoming the class imbalance problem

    Get PDF
    Many classification problems must deal with imbalanced datasets where one class \u2013 the majority class \u2013 outnumbers the other classes. Standard classification methods do not provide accurate predictions in this setting since classification is generally biased towards the majority class. The minority classes are oftentimes the ones of interest (e.g., when they are associated with pathological conditions in patients), so methods for handling imbalanced datasets are critical. Using several different datasets, this paper evaluates the performance of state-of-the-art classification methods for handling the imbalance problem in both binary and multi-class datasets. Different strategies are considered, including the one-class and dimension reduction approaches, as well as their fusions. Moreover, some ensembles of classifiers are tested, in addition to stand-alone classifiers, to assess the effectiveness of ensembles in the presence of imbalance. Finally, a novel ensemble of ensembles is designed specifically to tackle the problem of class imbalance: the proposed ensemble does not need to be tuned separately for each dataset and outperforms all the other tested approaches. To validate our classifiers we resort to the KEEL-dataset repository, whose data partitions (training/test) are publicly available and have already been used in the open literature: as a consequence, it is possible to report a fair comparison among different approaches in the literature. Our best approach (MATLAB code and datasets not easily accessible elsewhere) will be available at https://www.dei.unipd.it/node/2357
    corecore