189 research outputs found

    Cross-site Scripting Attack Detection Using Machine Learning with Hybrid Features

    Get PDF
    This study aims to measure the classification accuracy of XSS attacks by using a combination of two methods of determining feature characteristics, namely using linguistic computation and feature selection. XSS attacks have a certain pattern in their character arrangement, this can be studied by learners using n-gram modeling, but in certain cases XSS characteristics can contain a certain meta and synthetic this can be learned using feature selection modeling. From the results of this research, hybrid feature modeling gives good accuracy with an accuracy value of 99.87%, it is better than previous studies which the average is still below 99%, this study also tries to analyze the false positive rate considering that the false positive rate in attack detection is very influential for the convenience of the information security team, with the modeling proposed, the false positive rate is very small, namely 0.039%This study aims to measure the classification accuracy of XSS attacks by using a combination of two methods of determining feature characteristics, namely using linguistic computation and feature selection. XSS attacks have a certain pattern in their character arrangement, this can be studied by learners using n-gram modeling, but in certain cases XSS characteristics can contain a certain meta and synthetic this can be learned using feature selection modeling. From the results of this research, hybrid feature modeling gives good accuracy with an accuracy value of 99.87%, it is better than previous studies which the average is still below 99%, this study also tries to analyze the false positive rate considering that the false positive rate in attack detection is very influential for the convenience of the information security team, with the modeling proposed, the false positive rate is very small, namely 0.039

    Imbalanced data classification and its application in cyber security

    Get PDF
    Cyber security, also known as information technology security or simply as information security, aims to protect government organizations, companies and individuals by defending their computers, servers, electronic systems, networks, and data from malicious attacks. With the advancement of client-side on the fly web content generation techniques, it becomes easier for attackers to modify the content of a website dynamically and gain access to valuable information. The impact of cybercrime to the global economy is now more than ever, and it is growing day by day. Among various types of cybercrimes, financial attacks are widely spread and the financial sector is among most targeted. Both corporations and individuals are losing a huge amount of money each year. The majority portion of financial attacks is carried out by banking malware and web-based attacks. The end users are not always skilled enough to differentiate between injected content and actual contents of a webpage. Designing a real-time security system for ensuring a safe browsing experience is a challenging task. Some of the existing solutions are designed for client side and all the users have to install it in their system, which is very difficult to implement. In addition, various platforms and tools are used by organizations and individuals, therefore, different solutions are needed to be designed. The existing server-side solution often focuses on sanitizing and filtering the inputs. It will fail to detect obfuscated and hidden scripts. This is a realtime security system and any significant delay will hamper user experience. Therefore, finding the most optimized and efficient solution is very important. To ensure an easy installation and integration capabilities of any solution with the existing system is also a critical factor to consider. If the solution is efficient but difficult to integrate, then it may not be a feasible solution for practical use. Unsupervised and supervised data classification techniques have been widely applied to design algorithms for solving cyber security problems. The performance of these algorithms varies depending on types of cyber security problems and size of datasets. To date, existing algorithms do not achieve high accuracy in detecting malware activities. Datasets in cyber security and, especially those from financial sectors, are predominantly imbalanced datasets as the number of malware activities is significantly less than the number of normal activities. This means that classifiers for imbalanced datasets can be used to develop supervised data classification algorithms to detect malware activities. Development of classifiers for imbalanced data sets has been subject of research over the last decade. Most of these classifiers are based on oversampling and undersampling techniques and are not efficient in many situations as such techniques are applied globally. In this thesis, we develop two new algorithms for solving supervised data classification problems in imbalanced datasets and then apply them to solve malware detection problems. The first algorithm is designed using the piecewise linear classifiers by formulating this problem as an optimization problem and by applying the penalty function method. More specifically, we add more penalty to the objective function for misclassified points from minority classes. The second method is based on the combination of the supervised and unsupervised (clustering) algorithms. Such an approach allows one to identify areas in the input space where minority classes are located and to apply local oversampling or undersampling. This approach leads to the design of more efficient and accurate classifiers. The proposed algorithms are tested using real-world datasets. Results clearly demonstrate superiority of newly introduced algorithms. Then we apply these algorithms to design classifiers to detect malwares.Doctor of Philosoph

    A taxonomy of network threats and the effect of current datasets on intrusion detection systems

    Get PDF
    As the world moves towards being increasingly dependent on computers and automation, building secure applications, systems and networks are some of the main challenges faced in the current decade. The number of threats that individuals and businesses face is rising exponentially due to the increasing complexity of networks and services of modern networks. To alleviate the impact of these threats, researchers have proposed numerous solutions for anomaly detection; however, current tools often fail to adapt to ever-changing architectures, associated threats and zero-day attacks. This manuscript aims to pinpoint research gaps and shortcomings of current datasets, their impact on building Network Intrusion Detection Systems (NIDS) and the growing number of sophisticated threats. To this end, this manuscript provides researchers with two key pieces of information; a survey of prominent datasets, analyzing their use and impact on the development of the past decade's Intrusion Detection Systems (IDS) and a taxonomy of network threats and associated tools to carry out these attacks. The manuscript highlights that current IDS research covers only 33.3% of our threat taxonomy. Current datasets demonstrate a clear lack of real-network threats, attack representation and include a large number of deprecated threats, which together limit the detection accuracy of current machine learning IDS approaches. The unique combination of the taxonomy and the analysis of the datasets provided in this manuscript aims to improve the creation of datasets and the collection of real-world data. As a result, this will improve the efficiency of the next generation IDS and reflect network threats more accurately within new datasets

    A taxonomy of network threats and the effect of current datasets on intrusion detection systems

    Get PDF
    As the world moves towards being increasingly dependent on computers and automation, building secure applications, systems and networks are some of the main challenges faced in the current decade. The number of threats that individuals and businesses face is rising exponentially due to the increasing complexity of networks and services of modern networks. To alleviate the impact of these threats, researchers have proposed numerous solutions for anomaly detection; however, current tools often fail to adapt to ever-changing architectures, associated threats and zero-day attacks. This manuscript aims to pinpoint research gaps and shortcomings of current datasets, their impact on building Network Intrusion Detection Systems (NIDS) and the growing number of sophisticated threats. To this end, this manuscript provides researchers with two key pieces of information; a survey of prominent datasets, analyzing their use and impact on the development of the past decade’s Intrusion Detection Systems (IDS) and a taxonomy of network threats and associated tools to carry out these attacks. The manuscript highlights that current IDS research covers only 33.3% of our threat taxonomy. Current datasets demonstrate a clear lack of real-network threats, attack representation and include a large number of deprecated threats, which together limit the detection accuracy of current machine learning IDS approaches. The unique combination of the taxonomy and the analysis of the datasets provided in this manuscript aims to improve the creation of datasets and the collection of real-world data. As a result, this will improve the efficiency of the next generation IDS and reflect network threats more accurately within new datasets

    A taxonomy and survey of intrusion detection system design techniques, network threats and datasets

    Get PDF
    With the world moving towards being increasingly dependent on computers and automation, one of the main challenges in the current decade has been to build secure applications, systems and networks. Alongside these challenges, the number of threats is rising exponentially due to the attack surface increasing through numerous interfaces offered for each service. To alleviate the impact of these threats, researchers have proposed numerous solutions; however, current tools often fail to adapt to ever-changing architectures, associated threats and 0-days. This manuscript aims to provide researchers with a taxonomy and survey of current dataset composition and current Intrusion Detection Systems (IDS) capabilities and assets. These taxonomies and surveys aim to improve both the efficiency of IDS and the creation of datasets to build the next generation IDS as well as to reflect networks threats more accurately in future datasets. To this end, this manuscript also provides a taxonomy and survey or network threats and associated tools. The manuscript highlights that current IDS only cover 25% of our threat taxonomy, while current datasets demonstrate clear lack of real-network threats and attack representation, but rather include a large number of deprecated threats, hence limiting the accuracy of current machine learning IDS. Moreover, the taxonomies are open-sourced to allow public contributions through a Github repository
    • …
    corecore