97 research outputs found

    Noncircularity exploitation in signal processing overview and application to radar

    Get PDF
    International audienceWith new generation of Active Digital Radar Antenna, there is a renewal of waveform generation and processing approaches, and new strategies can be explored to optimize waveform design and waveform analysis and to benefit of all potential waveform diversity. Among these strategies, building and exploitation of the Noncircularity of waveforms is a promising issue. Up to the middle of the nineties, most of the signals encountered in practice are assumed to be second order (SO) circular (or proper), with a zero second correlation function. However, in numerous operational contexts such as in radio communications, the observed signals are either SO noncircular (or improper) or jointly SO noncircular with a particular signal to estimate, to detect or to demodulate, with some information contained in the second correlation function of the signals. Exploitation of this information in the processing of SO noncircular signals may generate dramatic gain in performance with respect to conventional processing and opens new perspective in signal processing. The purpose of this paper is to present a short overview of the interest of taking into account the potential SO noncircularity of the signals in signal processing and to describe the potential interest of SO noncircular waveforms for radar applications

    Noncircular Waveforms Exploitation for Radar Signal Processing : Survey and Study for Agile Radar Waveform

    Get PDF
    International audienceWith new generation of Active Digital Radar Antenna, there is a renewal of waveform generation and processing approaches, and new strategies can be explored to optimize waveform design and waveform analysis and to benefit of all potential waveform diversity. Among these strategies, building and exploitation of the Noncircularity of waveforms is a promising issue. Up to the middle of the nineties, most of the signals encountered in practice are assumed to be second order (SO) circular (or proper), with a zero second correlation function. However, in numerous operational contexts such as in radio communications, the observed signals are either SO noncircular (or improper) or jointly SO noncircular with a particular signal to estimate, to detect or to demodulate, with some information contained in the second correlation function of the signals. Exploitation of this information in the processing of SO noncircular signals may generate dramatic gain in performance with respect to conventional processing and opens new perspective in signal processing. The purpose of this paper is to present a short overview of the interest of taking into account the potential SO noncircularity of the signals in signal processing and to describe the potential interest of SO noncircular waveforms for radar applications

    Principles of Mobile Communication

    Full text link

    Robust interference cancellation for differential quadrature phase-shift keying modulation with band limiting and adaptive filter

    Get PDF
    Differential quadrature phase-shift keying (DQPSK) modulation techniques and their variants are widely applied in digital communication, such as for high-speed optical fiber, bluetooth, or satellite communication. In its implementation, DQPSK cannot be separated from the potential harmful interference. In this research, a system model has been made for observation and analysis of the interference cancellation process. Discrete finite-duration impulse response (FIR) filters for band limiting and adaptive filter are the key components of the supporting block for this system model. Robust Simulink results have shown a significant increase in system performance in the existence of these key components. The indication has been shown by the best bit error rate (BER) of 3.3e-05. Constellation and eye pattern diagrams have supported the BER

    Generalized Equalization Algorithm Utilizing Improper ISI

    Full text link

    A Survey of Blind Modulation Classification Techniques for OFDM Signals

    Get PDF
    Blind modulation classification (MC) is an integral part of designing an adaptive or intelligent transceiver for future wireless communications. Blind MC has several applications in the adaptive and automated systems of sixth generation (6G) communications to improve spectral efficiency and power efficiency, and reduce latency. It will become a integral part of intelligent software-defined radios (SDR) for future communication. In this paper, we provide various MC techniques for orthogonal frequency division multiplexing (OFDM) signals in a systematic way. We focus on the most widely used statistical and machine learning (ML) models and emphasize their advantages and limitations. The statistical-based blind MC includes likelihood-based (LB), maximum a posteriori (MAP) and feature-based methods (FB). The ML-based automated MC includes k-nearest neighbors (KNN), support vector machine (SVM), decision trees (DTs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) based MC methods. This survey will help the reader to understand the main characteristics of each technique, their advantages and disadvantages. We have also simulated some primary methods, i.e., statistical- and ML-based algorithms, under various constraints, which allows a fair comparison among different methodologies. The overall system performance in terms bit error rate (BER) in the presence of MC is also provided. We also provide a survey of some practical experiment works carried out through National Instrument hardware over an indoor propagation environment. In the end, open problems and possible directions for blind MC research are briefly discussed
    • …
    corecore