89,951 research outputs found

    Metamodel-based importance sampling for structural reliability analysis

    Full text link
    Structural reliability methods aim at computing the probability of failure of systems with respect to some prescribed performance functions. In modern engineering such functions usually resort to running an expensive-to-evaluate computational model (e.g. a finite element model). In this respect simulation methods, which may require 103610^{3-6} runs cannot be used directly. Surrogate models such as quadratic response surfaces, polynomial chaos expansions or kriging (which are built from a limited number of runs of the original model) are then introduced as a substitute of the original model to cope with the computational cost. In practice it is almost impossible to quantify the error made by this substitution though. In this paper we propose to use a kriging surrogate of the performance function as a means to build a quasi-optimal importance sampling density. The probability of failure is eventually obtained as the product of an augmented probability computed by substituting the meta-model for the original performance function and a correction term which ensures that there is no bias in the estimation even if the meta-model is not fully accurate. The approach is applied to analytical and finite element reliability problems and proves efficient up to 100 random variables.Comment: 20 pages, 7 figures, 2 tables. Preprint submitted to Probabilistic Engineering Mechanic

    Robust fault tolerant control of induction motor system

    Get PDF
    Research into fault tolerant control (FTC, a set of techniques that are developed to increase plant availability and reduce the risk of safety hazards) for induction motors is motivated by practical concerns including the need for enhanced reliability, improved maintenance operations and reduced cost. Its aim is to prevent that simple faults develop into serious failure. Although, the subject of induction motor control is well known, the main topics in the literature are concerned with scalar and vector control and structural stability. However, induction machines experience various fault scenarios and to meet the above requirements FTC strategies based on existing or more advanced control methods become desirable. Some earlier studies on FTC have addressed particular problems of 3-phase sensor current/voltage FTC, torque FTC, etc. However, the development of these methods lacks a more general understanding of the overall problem of FTC for an induction motor based on a true fault classification of possible fault types.In order to develop a more general approach to FTC for induction motors, i.e. not just designing specific control approaches for individual induction motor fault scenarios, this thesis has carried out a systematic research on induction motor systems considering the various faults that can typically be present, having either “additive” fault or “multiplicative” effects on the system dynamics, according to whether the faults are sensor or actuator (additive fault) types or component or motor faults (multiplicative fault) types.To achieve the required objectives, an active approach to FTC is used, making use of fault estimation (FE, an approach that determine the magnitude of a fault signal online) and fault compensation. This approach of FTC/FE considers an integration of the electrical and mechanical dynamics, initially using adaptive and/or sliding mode observers, Linear Parameter Varying (LPV, in which nonlinear systems are locally decomposed into several linear systems scheduled by varying parameters) and then using back-stepping control combined with observer/estimation methods for handling certain forms of nonlinearity.In conclusion, the thesis proposed an integrated research of induction motor FTC/FE with the consideration of different types of faults and different types of uncertainties, and validated the approaches through simulations and experiments

    Guided patch-wise nonlocal SAR despeckling

    Full text link
    We propose a new method for SAR image despeckling which leverages information drawn from co-registered optical imagery. Filtering is performed by plain patch-wise nonlocal means, operating exclusively on SAR data. However, the filtering weights are computed by taking into account also the optical guide, which is much cleaner than the SAR data, and hence more discriminative. To avoid injecting optical-domain information into the filtered image, a SAR-domain statistical test is preliminarily performed to reject right away any risky predictor. Experiments on two SAR-optical datasets prove the proposed method to suppress very effectively the speckle, preserving structural details, and without introducing visible filtering artifacts. Overall, the proposed method compares favourably with all state-of-the-art despeckling filters, and also with our own previous optical-guided filter

    Integration of Cost andWork Breakdown Structures in the Management of Construction Projects

    Get PDF
    Scope management allows project managers to react when a project underperforms regarding schedule, budget, and/or quality at the execution stage. Scope management can also minimize project changes and budget omissions, as well as improve the accuracy of project cost estimates and risk responses. For scope management to be effective, though, it needs to rely on a robust work breakdown structure (WBS). A robust WBS hierarchically and faithfully reflects all project tasks and work packages so that projects are easier to manage. If done properly, the WBS also allows meeting the project objectives while delivering the project on time, on budget, and with the required quality. This paper analyzes whether the integration of a cost breakdown structure (CBS) can lead to the generation of more robust WBSs in construction projects. Over the last years, some international organizations have standardized and harmonized different cost classification systems (e.g., ISO 12006-2, ISO 81346-12, OmniClass, CoClass, UniClass). These cost databases have also been introduced into building information modeling (BIM) frameworks. We hypothesize that in BIM environments, if these CBSs are used to generate the project WBS, several advantages are gained such as sharper project definition. This enhanced project definition reduces project contradictions at both planning and execution stages, anticipates potential schedule and budget deviations, improves resource allocation, and overall it allows a better response to potential project risks. The hypothesis that the use of CBSs can generate more robust WBSs is tested by the response analysis of a questionnaire survey distributed among construction practitioners and project managers. By means of structural equation modeling (SEM), the correlation (agreement) and perception differences between two 250-respondent subsamples (technical project staff vs. project management staff) are also discussed. Results of this research support the use of CBSs by construction professionals as a basis to generate WBSs for enhanced project management (PM)

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version
    corecore